

Two APS Upgrade Beamlines and Their Expected Performance at the MBA APS

Ruben Reininger X-ray Science Division

Wednesday, September 25, 13

Outline

- Ray tracings and its limitations
- Hybrid method
- RIXS beamline: Figure errors
- ISN beamline: Flux gain
- Summary

What can SHADOW do?

i=1,N N limited by computer memory

What can SHADOW do?

What SHADOW can't do

i=1,N N limited by computer memory

Fast tool to iterate in beamline simulations Tested results on SRW

Ray Tracings

ISN

trans: 2.2×10^{-4} SDx:6.4 nm SDy:6.6nm

Fast tool to iterate in beamline simulations Tested results on SRW

Fast tool to iterate in beamline simulations Tested results on SRW

Fast tool to iterate in beamline simulations Tested results on SRW

Fast tool to iterate in beamline simulations Tested results on SRW

Electron parameters APS, MBA

Performance Characteristics of APS Multibend Achromat Lattice

Michael Borland, Accelerator Systems Division CVS revision 1.2: Tue Jul 30 20:19:01 CDT 2013.

Quantity	Symbol	Range	Units
Horizontal beta function	β_x	1-4	m
Horizontal dispersion function	η_x	< 3	mm
Horizontal beam size	σ_x	5 - 17	$\mu { m m}$
Horizontal beam divergence	$\sigma_{x'}$	3 - 9	$\mu \mathrm{rad}$
Horizontal size-divergence product	$\sigma_x \sigma_{x'}$	30 - 73	pm
Vertical beta function	$eta_{m{y}}$	1-4	m
Vertical dispersion function	η_y	0	mm
Vertical beam size	σ_y	2 - 13	$\mu { m m}$
Vertical beam divergence	$\sigma_{y'}$	1 - 6	$\mu \mathrm{rad}$
Vertical size-divergence product	$\sigma_y \sigma_{y'}$	6 - 40	pm

43 Hor 5.6 Ver					
E	Ξle		11.		
	APS	MBA			
σ_x	276	14.8	μm		
σ_y	11.6	4.3	μm		
σ'_{x}	11.6	5.0	µrad		
σ'_y	3.7	1.7	µrad		
٤x	3200	74	pmrad		
ε _y	42	7.4	pmrad		

Photon parameters APS, MBA

Photon RIXS	Electron		Total				
Energy: 11.2 keV, (4.8 m device)		APS	MBA		APS	MBA	
	σ _x	276	14.8	Σ _x	276	15.6	μm
$\sigma_r = 5.2$	σ_y	11.6	4.3	Σ _y	12.7	6.8	μm
	σ' _x	11.6	5.0	Σ' _x	12.0	6.0	µrad
$\sigma_{ ho} = 3.4$	σ'_y	3.7	1.7	Σ'y	5.0	3.8	µrad

$$\sigma_r \approx rac{1}{2\pi} \sqrt{2L\lambda}$$
 For resonant $\sigma_
ho pprox \sqrt{rac{\lambda}{2L}}$ energy

$$\Sigma_{x,y} \approx \sqrt{\sigma_{x,y}^2 + \sigma_r^2}$$

$$\Sigma'_{x,y} \approx \sqrt{\sigma_{x,y}^{\prime 2} + \sigma_{\rho}^2}$$

RIXS: Optics considered in hybrid simulations

Element	Length	Distance from source (mm)	Incidend (mrad)	ce angle	
Elliptical cylinder Hor. Focusing	320 mm	39,120	3		
Elliptical cylinder Ver. focusing	320 mm	39,440	3		
Sample		40,000			
			/ertical	Monos not inc vibrations cou detrimental	luded but ld be
Source		Horiz	zontal	Sample	
				>	

RIXS: Optics considered in hybrid simulations

Element	Length	Distance from source (mm)	Incidenc (mrad)	e angle	
Elliptical cylinder Hor. Focusing	320 mm	39,120	3		
Elliptical cylinder Ver. focusing	320 mm	39,440	3		
Sample		40,000			
	Two monos		/ertical	Monos not inc vibrations cou detrimental	luded but ld be
Source		Horiz	contal	Sample	
				>	

APS: Hybrid @ sample

Trans: 0.61 SDx:5.7 μ m SDy:1.0 μ m Hor RMS 1.0 μ rad, Ver RMS 1.0 μ rad

APS: Hybrid @ sample

Trans: 0.61 SDx:5.7 μ m SDy:1.0 μ m Hor RMS 1.0 μ rad, Ver RMS 1.0 μ rad

MBA: Hybrid sample

Trans: 0.96 SDx:1.5 μ m SDy:1.0 μ m Hor RMS 1.0 μ rad, Ver RMS 1.0 μ rad

Trans:0.82 SDx:1.0 μ m SDy:0.83 μ m Hor RMS 1.0 μ rad, Ver RMS 1.0 μ rad

Trans: 0.96 SDx:1.5 μ m SDy:1.0 μ m Hor RMS 1.0 μ rad, Ver RMS 1.0 μ rad

APS Users Monthly Operations Meeting, September 25, 2013

800

- 600

- 400

- 200

- 0

Trans:0.82 SDx:1.0 μ m SDy:0.83 μ m Hor RMS 1.0 μ rad, Ver RMS 1.0 μ rad

Trans: 0.96 SDx:0.63 μm SDy:0.41 μm Hor RMS 0.45 $\mu rad, Ver RMS 0.45 <math display="inline">\mu rad$

Trans: 0.96 SDx:0.42 μm SDy:0.20 μm Hor RMS 0.15 $\mu rad, Ver$ RMS 0.15 μrad

Trans: 0.96 SDx:0.63 μ m SDy:0.41 μ m Hor RMS 0.45 μ rad, Ver RMS 0.45 μ rad

Trans: 0.96 SDx:0.42 μm SDy:0.20 μm Hor RMS 0.15 $\mu rad, Ver$ RMS 0.15 μrad

Trans: 0.96 SDx:0.38 μm SDy:0.16 μm Hor RMS 0.05 μrad, Ver RMS 0.05 μrad

Along vertical diff. 100 nm

ISN Beamline

		APS	MBA	
10 keV 2.4 m device	Σ _x	276	15.8	μm
	Σy	12.7	7.0	μm
	Σ' _x	12.0	6.0	µrad
	Σ'y	5.0	3.8	µrad

Wednesday, September 25, 13

ISN Beamline

Element	Size	Distance from
		source (mm)
Elliptical cyl. Vert. Focusing	360×2 mm ²	35300
Aperture	11×4 µm² (h×v)	42200
Elliptical cyl. Vert. Focusing	180 mm	71820
Elliptical cyl. Hor. Focusing	60 mm	71940
Sample		72000

Horizontal direction

APS: Hybrid @ sample

No horizontal aperture

APS: Hybrid @ sample

MBA: Hybrid @ sample

Trans: 3.2e-2 SDx:38 μm SDy:41 μm SE: 0.1 μrad

No horizontal aperture

APS: Hybrid @ sample

MBA: Hybrid @ sample

Trans: 3.2e-2 SDx:38 μm SDy:41 μm SE: 0.1 μrad

Beamline needs to be optimized for MBA

Trans: 3.0e-2 SDx:44 µrad SDy:69 µrad SE: 0.4 µrad

Trans: 3.2e-2 SDx:38 μm SDy:41 μm SE: 0.1 μrad

Summary

- For demanding beamlines, "state of the art" optics are required
- Can we standardize optics?
- New tool to asses beamline performance. Will incorporate into SHADOW.
- Working on tracking coherence
- Lahsen Assoufid will be covering many more issues Oct. 10

Thanks: Xianbo Shi Manuel Sanchez del Rio Lahsen Assoufid Joerg Maser Thomas Gog Diego Casa