

Preliminary Expected Performance Characteristics of an APS Multi-Bend Achromat Lattice

Michael Borland for the APS Upgrade Team August 28, 2013

Accelerator Systems Division Argonne National Laboratory

Outline

- Introduction
 - Goals
 - Maximizing x-ray brightness
 - Storage ring scaling
- Multi-bend achromat storage rings on the horizon
- Possible APS upgrade to a 4th-generation source
 - Preliminary parameters
 - Preliminary performance
- Summary

Goals

Basic goal:

Dramatically enhance the performance of the APS as a hard x-ray source

- Measures of performance
 - Average brightness
 - Average flux
 - Brightness per pulse
 - Flux per pulse
- Opportunity exists with new lattice designs to provide
 - Much higher brightness
 - Higher flux
 - Significantly improved timing characteristics

X-ray Brightness

An important quality of a beam is expressed by the brightness

- Maximizing brightness entails minimizing the denominator, i.e., minimizing the photon beam sizes and divergences
- Ideally, for the electron beam we want "diffraction-limited" emittances and matched beta functions

$$\epsilon_{x,y} \leq \frac{\lambda}{4\pi} \qquad \beta_{x,y} \approx \frac{L_u}{\pi}$$

How Close are We Now to the Diffraction Limit?

For an undulator filling a typical 5-m-long straight, ideal beta function is

 $\beta_r = 1.6 \mathrm{m}$

which is feasible, though not always easy.

Emittance is another matter

$$\begin{array}{lll} \epsilon_q[pm] & \lesssim & \frac{100}{E_p[keV]} \\ \epsilon_q[pm] & \lesssim & 8\lambda[\mathring{A}] \end{array} & \Rightarrow & 1 \text{ keV} & \to & \epsilon_q \lesssim 100 \text{ pm} \\ & 10 \text{ keV} & \to & \epsilon_q \lesssim 10 \text{ pm} \end{array}$$

For typical 3rd-generation rings

$$\epsilon_x : [1, 5]$$
nm $\epsilon_y : [1, 40]$ pm

Next-generation rings should bring horizontal emittance below ~100 pm

Contemporary Storage Ring Light Sources

Conventional storage rings (e.g., APS) typically have double-bend configuration

From Double- to Multi-Bend Achromats

All figures courtesy C. Steier, LBNL.

- Rings today have N_d=2 or (more rarely) 3
- Emittance scales like¹

$$\epsilon_0 \sim rac{E^2}{(N_d N_s)^3}$$

- Several groups proposed N_d>3 lattices in 1990s²
 - 7BA should have ~40x lower emittance than today's 2B(A) lattices
 - Promises much higher brightness and coherence over entire spectrum

^{1:} J. Murphy, Synchrotron Light Source Data Book, BNL 42333, 1989.

^{2:} Einfeld et al., NIM A 335, 1993; Joho et al., EPAC 94; Einfeld et al., PAC95; Kaltchev et al., PAC95.

MAX-IV (Sweden) 7BA is First in Line

- 3 GeV, 528-m circumference, $\varepsilon_0 = 330 \text{ pm}$
- Innovative, cost-effective construction of multiple magnets with a shared iron yoke
- 26-mm magnet bore diameter allows strong fields in magnets
- NEG-pumped round chamber in arcs allows small magnet bores
- Commissioning in early 2015

All figures courtesy S. Leemann, MAX-Lab.

5BA SIRIUS Project (Brazil) Underway

- 3 GeV, 518-m circumference, $\varepsilon_0 = 280$ pm
- Ten 6-m and ten 7-m straights

AC10 Mode

30 25 20 (E) ^λg^{, x}g

10

0

- Alternating high/low beta functions
- 2-T superbend for 12-keV critical energy

12

s (m)

16

18

22

24

0.08

0.06 0.04 (\underline{m}) 0.02 0.00

ESRF Upgrade Phase II

Thanks to the large expertise gained during ESRF UP phase 1 and the worldwide efforts to develop an Ultimate Storage Ring

ESRF Upgrade Phase II will be an excellent opportunity to:

- Drastically increase the brightness of our Light Source to maintain worldwide excellence for the next 1-2 decades
- Improve and expand the science reach of the SR-based light sources
- Enable new technologies
- Provide important know-how to continue the push for higher performances of the SR-based Light Sources

4th-Generation Storage Rings on the Horizon

- World-wide activity to develop ultra-bright storage ring x-ray sources based on MBA lattices
 - MAX-IV and SIRIUS under construction
 - MBA upgrade proposals for ESRF, SPring-8, ALS
 - New MBA rings proposed by SLAC, IHEP (China)
- Broad consensus that much lower emittance is possible
 - Advances in simulation fidelity and sophistication
 - Newly applied evolutionary optimization methods
 - Success of top-up allows short beam lifetime
 - Advances in beam diagnostics and machine correction
 - Demonstration of few-picometer vertical emittances
 - Demonstration of sub-micron and sub-microradian beam stability
- APS facility is well positioned to take advantage of these developments

Preliminary APS MBA Parameters

 Based on an LDRD-funded study, we've developed a set of preliminary parameters for a possible APS MBA lattice

Quantity	Symbol	Range	Units
Beam energy	E	6	GeV
Natural emittance	ϵ_0	60 - 80	pm
Rms energy spread	σ_{δ}	0.09 - 0.12	%
Emittance ratio	$\kappa = \epsilon_y / \epsilon_x$	0.1 - 1.0	
Emittance increase due to IBS	-	< 25	%
Horizontal emittance	ϵ_x	30 - 91	pm
Vertical emittance	ϵ_y	5 - 40	pm

 Note that horizontal emittance is very similar to our present vertical emittance of 35 pm

Hybrid 7 Bend Achromat APS Lattice Concept

Original lattice concept from ESRF.

L. Farvacque et al., Proc. IPAC13, 79 (2013).

Preliminary APS MBA Fill Patterns

- Total beam current would be 200 mA
- Fill patterns with 48 to 432 bunches would be possible
- Various timing patterns should be possible with up to 4 mA/bunch

Quantity	Symbol	Range	Units
Total current	Ι	200	mA
Number of bunches	N_b	48-432	
Bunch rate	f_b	11 - 117	MHz
Rms bunch duration	σ_t	12-67	\mathbf{ps}

Preliminary APS MBA ID Source Parameters

Beam sizes and divergences would be small in both planes

Quantity	Symbol	Range	Units
Horizontal beta function	eta_x	1-4	m
Horizontal dispersion function	η_x	< 3	mm
Horizontal beam size	σ_x	5 - 19	$\mu { m m}$
Horizontal beam divergence	$\sigma_{x'}$	3 - 10	$\mu \mathrm{rad}$
Horizontal size-divergence product	$\sigma_x \sigma_{x'}$	30 - 91	pm
Vertical beta function	$eta_{m{y}}$	1-4	m
Vertical dispersion function	η_y	0	mm
Vertical beam size	σ_y	2 - 13	$\mu { m m}$
Vertical beam divergence	$\sigma_{y'}$	1 - 6	$\mu \mathrm{rad}$
Vertical size-divergence product	$\sigma_y \sigma_{y'}$	5 - 40	pm

Preliminary APS MBA ID Parameters

- ID gaps would be much smaller than in the present machine
 - More than compensates for decrease of beam energy
- Also, MBA would permit small gaps in both planes
 - Vertically polarized undulators
 - Helical devices

Quantity	Symbol	Range	Units
Maximum length	L_u	4.8	m
Vertical chamber inside gap	g_v	6	mm
Horizontal chamber inside gap	g_h	6-12	mm

Preliminary APS MBA Dipole Source Parameters

- Emphasis is high brightness for ID beamlines
- Goal would be to retain all dipole beamlines with comparable performance to present day

Quantity	Symbol	Range	Units
Critical energy	e_c	15 - 20	keV
Radiation fan width	$ heta_B$	>1	mrad

Examples of Preliminary Expected Performance

Brightness increases of 100x or more compared to the brightest devices in APS today

Biggest increases for hard x-rays

Flux increases of about a factor of two or more

Curves based on the latest 80 -pm lattice, present-day undulators

Examples of Preliminary Expected Timing Performance

Brightness per pulse increases by 100x or more, with larger gains for harder x-rays

Flux per pulse comparable to or better than present-day APS

Curves based on the latest 80-pm lattice, present-day undulators

Conclusions

- We've learned a great deal since the first 3rd-generation sources began operating ~20 years ago
 - What was once considered bold (e.g., APS) is now commonplace
- There is world-wide activity to design 4th-generation storage ring light sources based on MBA lattices
 - Increases of 100x times in brightness and coherent fraction are within reach
 - Serious planning is underway at several existing facilities
- APS is studying how to incorporate an MBA lattice into the APS upgrade
- Thanks to S. Leemann, L. Liu, P. Raimondi, C. Steier, and colleagues for materials used in this presentation