High Energy Diffraction Microscopy at Sector 1: An Inside View of Materials' Responses

Thanks to: Linda Young Jay Schuren (AFRL) Sector 1 staff CMU graduate students

 $\mathbf{z}_{\mathbf{d}} = \mathbf{L}_{1}$

High Energy X-rays: > 50 keV

• Penetrate millimeter dimensions

High Energy X-rays: > 50 keV

- Penetrate millimeter dimensions
- Bragg diffraction at small angles
- Large reciprocal space coverage with small detector and one rotation

High Energy X-rays: > 50 keV

- Penetrate millimeter dimensions
- Bragg diffraction at small angles
- Large reciprocal space coverage with small detector and one rotation

What the APS does best: High brilliance at high energies

- Sector 1
 - Dedicated high energy beamline(s)
 - Tailored undulator sources (SCU coming)
 - High resolution area detectors
 - Precision mechanics
 - Data pipeline to Orthros cluster

Voxel based tensile axis in crystal coordinates Spatially resolved rotation and breakup

Each rotation is spatially resolved within grain interiors Li et al, J. Appl. Cryst. (2012)

10

AFRL-APS-CMU-LLNL-Cornell PUP

- Combine nf-, ff-HEDM, tomography
 - Coupled data collection
 - Coupled data reduction
 - Coupled interpretation
- Design, build, commission multi-technique compatible sample handling/environments

Allocations: Aug 2012, Dec 2012

Slides from J. Schuren presentation to APS SAC March, 2013

The Materials Genome Initiative

Goal: to decrease the time-to-market by over 50%

- Materials Genome Initiative for Global Competitiveness Jure 2013
 - 1. Develop a Materials Innovation Infrastructure
 - 2. Achieve National goals in energy, security, and human welfare with advanced materials
 - 3. Equipping the next generation materials workforce

"The inherently fragmented and multidisciplinary nature of this work demands scientists think of themselves not as an individual researcher, but as part of a powerful network collectively analyzing and using data generated by a larger community."

• Jon Almer

PETRA III

•

- Peter Kenesei
- Ali Mashayekhi
- Erika Benda
- Kurt Goetze
- Ulrich Lienert
- Joel Bernier
 - Frankie Li

- CHESS
 - 1

- Robert Suter
 - Jon Lind
- Matt Miller
- Donald Boyce
- Sol Gruner
- Ernie Fontes
- Darren Dale

- Armand Beaudoin
- Michael Sangid
- Basil Blank
 - Michael Schmidt
- Jay Schuren
- Paul Shade
- TJ Turner

Overview of the Techniques

Near Field Orientation Microscopy

Far Field Lattice Strain Techniques

Absorption Micro-Computed Tomography

Experimental Setup at APS-1-ID-E

Experimental Setup at APS-1-ID-E

DISTRIBUTION STATEMENT A. Approved for public release. Distribution unlimited.

Experimental Setup at APS-1-ID-E

DISTRIBUTION STATEMENT A. Approved for public release. Distribution unlimited.

Concurrent Near-, Far-field, and Tomography

Sample: IN-100 (Ni superalloy) energy = 51.954 keV

Near-field: D = 15 mm

Far-field: D = 650 mm

Thermally induced porosity

 Overview: TIP is thought to occur at grain boundary triple lines – using the full 3D dataset investigate coalescence statistics and the dependence on the local microstructure

Thank You!

Developing HEDM tools to nondestructively characterize samples at the microstructure length scale far from the free surface during known thermomechanical test conditions

