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Air bearing 
rotation 

Translations Strain application 

Sample gauge section 

X-rays 

High resolution 
detector system 

Near-field HEDM set-up 



What the APS does best: 
High brilliance at high energies 

• Sector 1 
• Dedicated high energy beamline(s) 
• Tailored undulator sources (SCU coming) 
• High resolution area detectors 
• Precision mechanics 
• Data pipeline to Orthros cluster 

After Upgrade 

Current 1-ID 



Recrystallization in pure Al 
Voxel-based reconstruction shows new 

grain and nature of prior 
neighborhood  

Lattice orientations 

Confidence metric 

KAM map: 0.5 deg scale 

annealing 

Hefferan et al, Acta Mat 2012 



0.06% Strain 14% Strain 6% Strain 

1 mm 

Example 2: Uniaxial Tensile Test on Copper 
Onset of plastic response in single layer: fine strain steps 

1 mm  
gauge section 

Sample: 

Cu: 99.99% pure 
 

Analysis of interior grains only 



Voxel based tensile axis in crystal coordinates 
Spatially resolved rotation and breakup 

Lattice rotation and bifurcation 
leading to broadening of scattering 

Strain levels 
  Blue  0% 
  Red   6% 
  Green 10%  
  Purple: 14% 

Pokharel, et al, in preparation 

Each rotation is 
spatially resolved 
within grain interiors 

Li et al, J. Appl. Cryst. (2012)  



AFRL-APS-CMU-LLNL-Cornell PUP 

• Combine nf-, ff-HEDM, tomography 
• Coupled data collection 
• Coupled data reduction 
• Coupled interpretation 

• Design, build, commission multi-technique 
compatible sample handling/environments 

Allocations: Aug 2012, Dec 2012 

Slides from J. Schuren presentation to APS SAC March, 2013 
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The Materials Genome Initiative 

1. Develop a Materials Innovation Infrastructure 
2. Achieve National goals in energy, security, and human welfare with advanced materials 
3. Equipping the next generation materials workforce 
 

Goal: to decrease the time-to-market by over 50% 

“The inherently fragmented and multidisciplinary nature of this work demands scientists think of 
themselves not as an individual researcher,  but as part of a powerful network collectively analyzing and 
using data generated by a larger community.” 
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Overview of the Techniques 
Absorption Micro-Computed Tomography Near Field Orientation Microscopy  

Provides: 
position/size of Inclusions, voids, 
cracks 
X-ray Char.: 
Both line focused and box beam 
Collection: 
Take image during M rotation 
increments. Move sample vertically to 
build up 3D volume using line beam 
Processing: 
Back projection of contrast within 2D 
image (mm^2) of direct beam 

Provides:  
grain shapes, subgrain orientation, 
subgrain strain(?)  
X-ray Char.: 
 Line focused beam (~ 1.5mm x 2um) 
Collection: 
Take image at N different distances and 
rotate M times (NxM images). Move 
sample vertically to build up 3D volume 
Processing: 
Reconstruct distinct diffraction spots on 
detector  

Far Field Lattice Strain Techniques 

Provides: 
grain volume, centroid, orientation, 
strain for individual grains 
X-ray Char.: 
Both line focused and box beam 
Collection: 
Take image during M rotation 
increments. Move sample vertically to 
build up 3D volume using line beam 
Processing: 
Back projection of diffraction spots w/ 
grain precession 
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Experimental Setup at APS-1-ID-E 
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Focusing optics to 
produce the line 

focused x-ray beam 

Camera used for 
Digital Image 

Correlation (DIC) 

Sample, near 
field/tomography 

detector, beam stop 
Far field 
detector 

Vertical stage used to scan the 
sample past the beam 
(submicron resolution) 

Horizontal 
translation stage 

X-ray beam path 

Experimental Setup at APS-1-ID-E 
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Tungsten beam stop 

Bottom flexure plate for 
aligning the sample 

DIC camera 

Bottom grip 

Sample 

Near field / 
tomography 

detector 

Experimental Setup at APS-1-ID-E 
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Concurrent Near-, Far-field, and Tomography 

Sample: IN-100 (Ni superalloy)   energy = 51.954 keV 

Near-field: D = 15 mm Far-field: D = 650 mm 

3 mm 200 mm 
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Processing Nickel-based superalloys 

•Thermally induced porosity 
– Overview: TIP is thought to occur at grain boundary triple lines – using the full 3D dataset 

investigate coalescence statistics and the dependence on the local microstructure 

Gamma+gamma’ 
Inclusions 

gamma’ 
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Thank You! 
Developing HEDM tools to nondestructively characterize samples at the microstructure 
length scale far from the free surface during known thermomechanical test conditions 

Far Field Lattice Strain Techniques 
-- Stress state of individual grains  

Absorption Micro-Computed 
Tomography 
-- Position/size of Inclusions, voids, 
and cracks  

Near Field Orientation Microscopy  
-- Subgrain orientation information 

Enable concurrent application 
to probe deforming materials 

Integrate High Energy X-ray 
Techniques With Thermo-
Mechanical Testing Future Research 

Quantify microstructure and 
stresses 

Initialize model w/ microstructure 
from HEDM 

Initial State 

Deformed State 

Evolve sample via thermo-
mechanical loading 

Simulate the experimental boundary 
conditions 

Compare both the measured and simulated stresses and crystallographic 
orientations 

Track evolution of both stresses and 
crystal orientations 

Closed-Loop Model Development/Validation 
 Identify where results disagree, then develop/refine key aspects of model 

Provide Validated Model for Component Designs 

Quantify microstructure and 
stresses 




