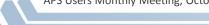


Advanced Photon Source Upgrade Update

George Srajer


APS Users Monthly Meeting

October 31, 2012

Outline

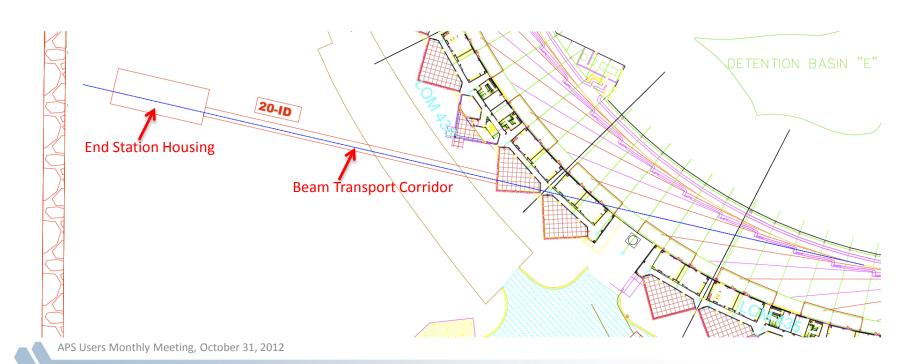
- Recent Major Review
 - October 16-18: Independent Cost Estimate/Independent Cost Review
- Preparation for the Upcoming Major Review
 - December 4-6: DOE CD-2 Baseline Review
 - Preliminary Design Report Milestones
 - Practice Talks

Independent Cost Estimate/Cost Review

- Date: October 16-18
- Part I: Independent Cost Estimate (ICE)
 - Conventional Facilities
 - Enclosures
 - Control Rooms

- Part II: Independent Cost Review (ICR)
 - ~ 50% of Project Scope
 - ~ 70% of Project Schedule

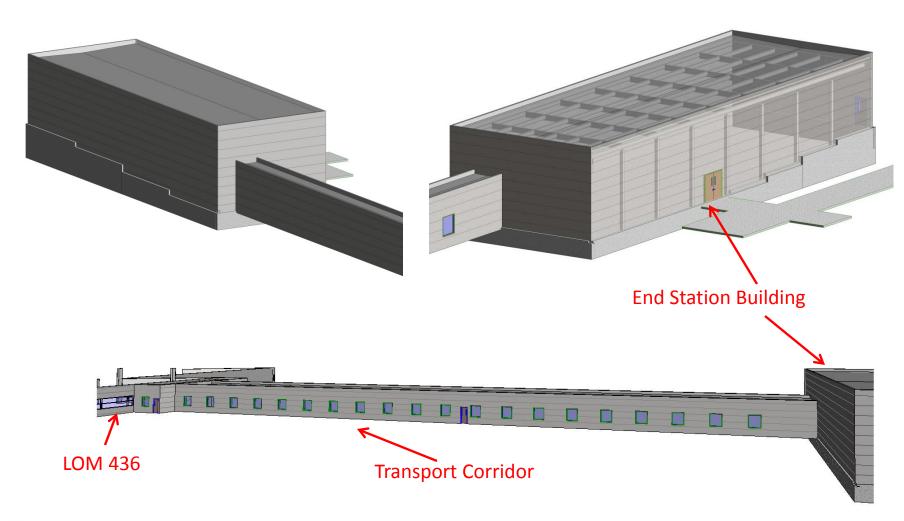
Draft Report on November 13


ICE Review Team

- RICK BLAISDELL, DOE APM, ICE Team Lead
- Scott Dam, MENG, MBA, P.E. Legin Group Consultant
- Larry Harrod US Cost
- Ian Sullivan, PMP MPR
- William S. Turner, BS, MS, PG Legin Group Consultant
- Mark Cunnigham US Cost
- John White DOE

Physical Infrastructure - Wide-Field Imaging Beamline (WBS U1.05.03.01)

- A 250-m-long beamline with two end stations in an external building.
- Provide a new (~ 4800 sq. ft.) hi-bay structure to house the end stations for the new beamline and a 100-m-long beam transport utility corridor.
- Preliminary design was completed. Consulting firms helped with HVAC,
 Geotechnical, Architectural, and Cost estimation services.



Wide Field Imaging: Overview of Scope Of Work

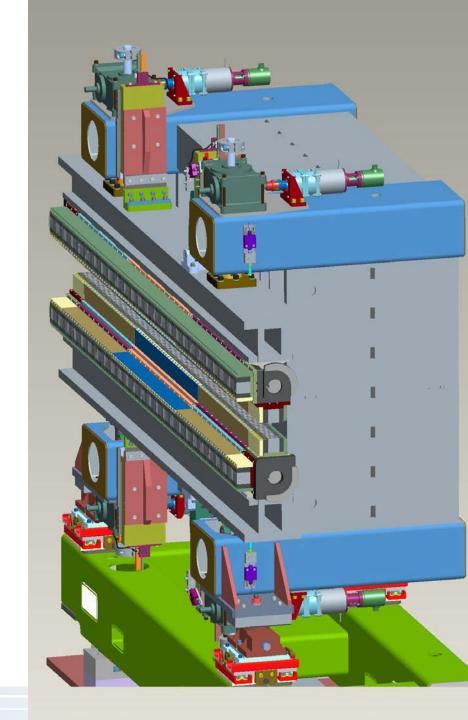
There are several distinct components to the Conventional Facilities aspects of this APS-U Project:

- Work inside the Experiment Hall Building
- Modification to the Lab Office Module (LOM 436 Building)
- Site Work (Parking, Roadways, Drainage)
- Beam Transport/ Utility Corridor
- End Station Building
- Engineering Design by APS-SO and Outside Consultants

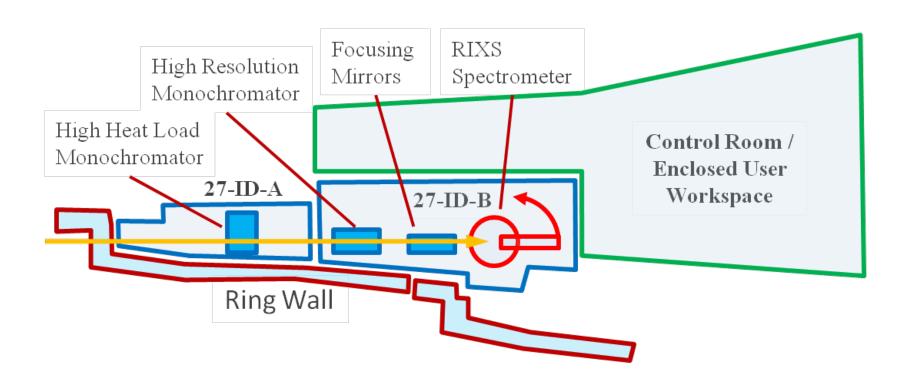
Wide Field Imaging: Isometric Views

Scope - Technical Components

10/10/2012 WBS	APS-U Target WBS Elements for Detailed Review Description		RSL Estimate	Reviewer
U1-1.01	Project Management & Planning		\$31,233,107	Herievel
U1-1.01.01.01	Project Management and Administration	\$	9,294,631.36	Scott/lan
U1-1.01.01.03	Project Controls/EV Support	\$	8,775,563.48	•
U1-1.01.01.06	Systems Integration & Management	\$	4,168,391.12	-
U1-1.02	Research and Development		\$14,373,455	•
U1-1.02.01.03	Short Pulse X-Ray (SPX) R&D	\$	11,760,004	Bill
U1-1.03	Accelerator Systems		\$71,376,627	
U1-1.03.02.02	Beam Stability	\$	7,539,538	Scott
U1-1.03.03.10	Mechanical Systems Infrastructure	\$	9,688,388	Scott
U1-1.03.03.12	Cavity & Cryomodule JLAB	\$	6,944,112	Scott
U1-1.03.04.04	Revolver Undulator	\$	5,822,804.00	Bill
U1-1.04	Experiment Facilities – Beamlines		\$115,488,872	
U1-1.04.02.03	Short Pulse X ray Imaging & Microscope	\$	9,107,079	Bill
U1-1.04.02.05	Wide Field Imaging	\$	12,216,129	Bill
U1-1.04.02.07	In situ Nanoprobe	\$	13,256,860	Bill
U1-1.04.02.10	High Energy X-Ray Diffraction	\$	9,002,193.00	Bill
U1-1.04.02.11	X-Ray Interface Science	\$	14,064,773	Bill
U1-1.04.02.13	Advanced Spectroscopy & LERIX	\$	8,358,995	Bill
U1-1.05	Infrastructure & Enabling		\$30,871,794	
U1-1.05.02.02	Front End for High Heat Load In Line Undulators	\$	4,189,702	Bill
U1-1.05.02.03	Front End for Canted Undulators (CUFE)	\$	3,955,164.00	Bill
	Total of Selected WBS Elements	\$	138,144,326.00	
	Percentage of Total		52.5%	1
	Grand Project Estimate	\$	263,343,853.00	
	Note: Ian will support WBS element reviews as availab	le		

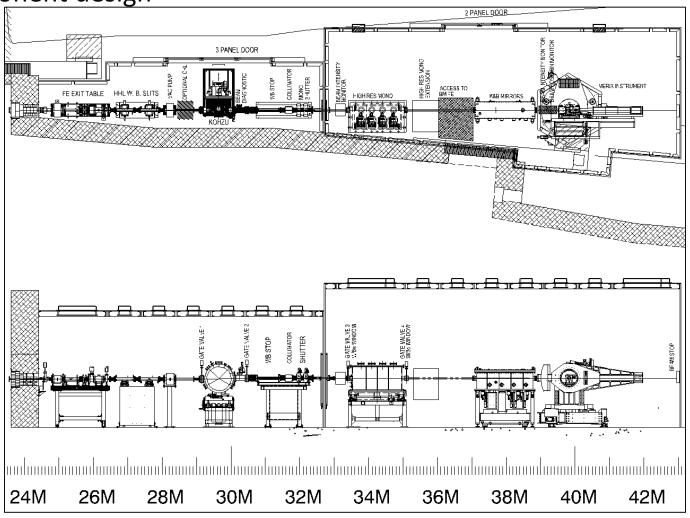

Scope: U1.03.04.04 - Revolver Undulator

- The scope of this WBS area is to construct, tune, install, and make functional five (5) complete revolver undulator systems.
- U1.03.04.04.01 Magnetic Structures
- U1.03.04.04.02 Revolver Supports
- U1.03.04.04.03 Controls & Cabling
- U1.03.04.04.04 Integration & Installation Revolver Undulators
- Ongoing design and prototyping of the revolver undulator are not APS Upgrade Project activities;
- APS Upgrade will adopt the successful design after review.

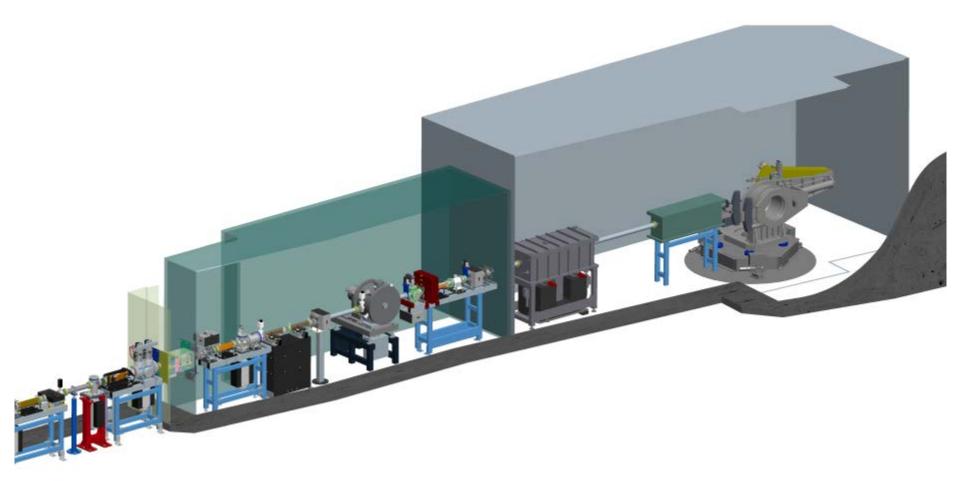

Scope: Revolver Undulator

- A revolver undulator is two undulators in one.
- Revolvers allow the user to remotely select either of two different magnetic structures available in the device.
- Each structure is optimized for a specific requirement or in order to cover a given spectral range with higher average brightness than would be possible with a single device.

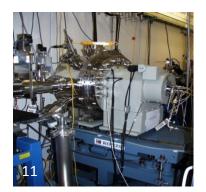
Experimental Facilities Design


RIXS as an example: Conceptual design as of CD-1

Experimental Facilities Design


RIXS as an example: Detailed beamline design, preliminary

component design

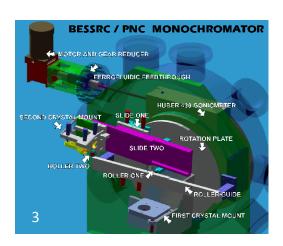


Experimental Facilities Design

RIXS as an example: Putting it all together.

Monochromator Designs Currently in Use

Kohzu Design


Accel Design

Rosenbaum Design

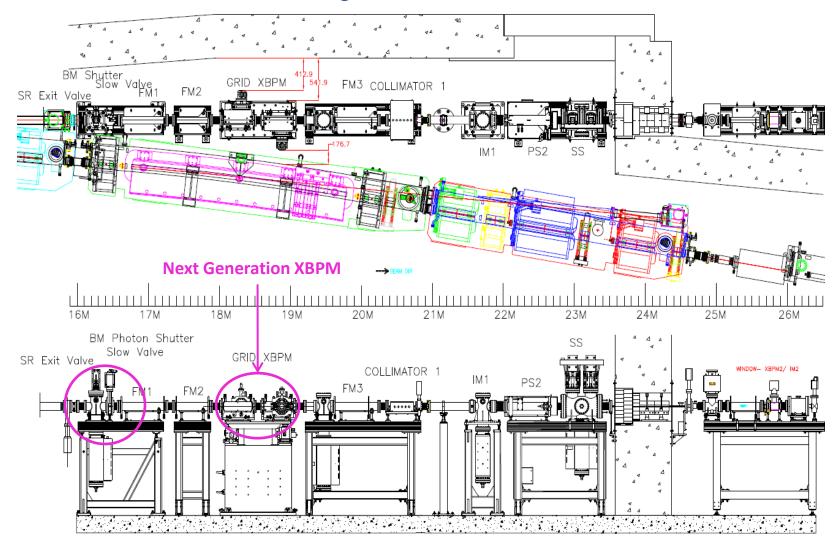
PSL / U Wisconsin

BESSRC Design

VG/Daresbury

Others:

CARS design IDT design JJ X-ray design Specialized APS designs UIUC design

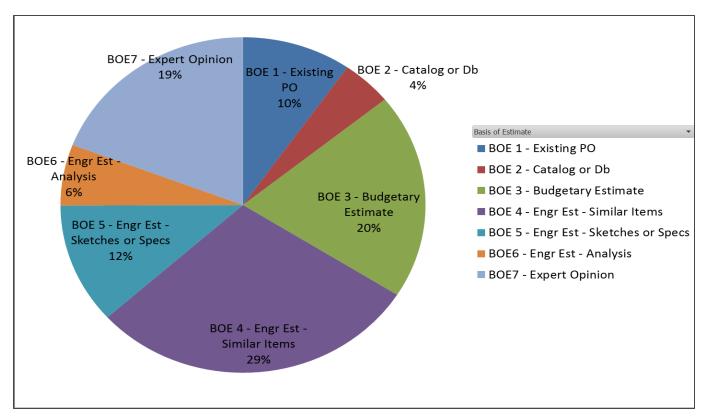

U1.05.02 Front Ends Scope Details

- APS has a total of 35 ID beam ports, 12 of them require no change due to the existing front ends that can operate at least 150 mA
- One front end (35-ID) is assigned to Dynamic Compression Sector (DCS) funded by National Nuclear Security Administration (NNSA) and is not in APS Upgrade scope
- Rest of the 22 front ends require either an upgrade or new front end

Quantity	Type of Front Ends	Description	Locations				
7	FEv1.2R	FEv1.2 Retrofit	5-ID, 10-ID, 15-ID, 17-ID, 18-ID, 19- ID, 33-ID				
7	HHL	New HHLFE with next generation XBPMs	3-ID, 4-ID, 7-ID, 8-ID, 11-ID, 14-ID 27-ID (unoccupied)				
6	CU	New CUFE with next generation XBPMs	2-ID, 9-ID, 20-ID, 32-ID 25-ID (unoccupied) and 28-ID (unoccupied)				
1	LSSCU	Long straight section CU for SCUs	1-ID				
1	SPXCU	CUFE for SPX (large vertical aperture)	6-ID				

U1.05.02.02 High Heat Load Front End with Next Generation X-ray Beam Position Monitor

Project Scope and WBS


WBS		Labor (k\$)	Non-Labor (k\$)	Total Estimated Cost (k\$)
U1	APS Upgrade Project			391,000
1.01	PROJECT MANAGEMENT	16,728	17,448	34,176
1.02	RESEARCH & DEVELOPMENT	8,213	7,245	15,458
1.03	ACCELERATOR SYSTEMS	30,187	40,601	70,789
1.04	EXPERIMENTAL FACILITIES	26,693	91,523	118,217
1.05	INFRASTRUCTURE AND ENABLING TECHNOLOGIES	8,976	20,089	29,065
	Sub-total (incl Indirect)	90,798	176,907	267,704
	Escalation	10,135	19,774	29,910
	Sub-total (incl Escalation & Indirect)	100,933	196,681	297,614
	Contingency	31671	61715	93,386

Available Contingency → 31.4% of TPC

Cost Development - BOE Contingency

 The Project has been actively pursuing R&D, refining scope, and getting better quotes since CD-1 to make the estimate more concrete

Project Change Requests: Samples

- APS-PEND07-U1 "SCU1 and 2" (reduction estimated \$1.75M)
 - Status= In progress.
- APS-PEND09-U1 "R&D Zone Plates" (increase estimate \$2-2.5M)
 - Status = In progress.

Integrated Beamline Installation Schedule

			CD-2				CD-3																							
ACTIVITY ID	ACRONYM	LOCA- TION	FY13Q1 (FY13Q2	FY13Q3	FY13Q4	FY14Q1	FY14Q2	FY14Q3	FY14Q4	FY15Q1	FY15Q2	FY15Q3	FY15Q4	FY16Q1	FY16Q2	FY16Q3	FY16Q4	FY17Q1	FY17Q2	FY17Q3	FY17Q4	FY18Q1	FY 18Q2	FY18Q3	FY18Q4	FY19Q1	FY19Q2	FY19Q3	FY19Q4
U1.04.02.02 Short Pulse X-ray Scattering and Spectroscopy	SPXSS	7																												
U1.04.02.03 Short Pulse X-ray Imaging and Microscopy	SPXIM	6																												
U1.04.02.04 High Flux Pump-Probe	HFPP (na)	14																												
U1.04.02.05a Wide Field Imaging (interior)	WFIi	20																												
U1.04.02.05b Wide Field Imaging (exterior) independent	WFIe (use WFfi)	20																												
U1.04.02.07 In-situ Nanoprobe	ISN	32																												
U1.04.02.08 Resonant Inelastic X-ray Scattering	RDCS	27																												
U1.04.02.09 Magnetic Spectroscopy-Hard	MS-H	4																												
U1.04.02.10 High Energy X-ray Diffraction	HEXD	1																												
U1.04.02.11 X-ray Interface Science	XIS (incl LSS))	28																												
U1.04.02.12 Sub-micron 3D Diffraction	S3DD	34																												
U1.04.02.13 Advanced Spectroscopy and LERIX	ASL	25																												
U1.04.02.16 Magnetic Spectrosopy-Soft	MS-S	2																												
U1.04.02.17 Magnetic Diffraction	MD	2																												
U1.04.02.18 Fuel Spray Dynamics	FSD	?																												
U1.04.02.19 Bragg Coherent Diffractive Imaging	BCDI	9																												
U1.04.02.20 Fluorescence Microscopy	mFluor	9																												

Target for first light ——> Beamline/Front end/Insertion device integration

DOE CD-2 Draft Agenda - Day 1 (December 4)

Department of Energy/Office of Science (CD-2) Review of the Advanced Photon Source Upgrade (APS-U) Project December 4-6, 2012

DRAFT AGENDA

Tuesday, December 4, 2012—APS Conference (402), Gallery on Lower Level

8:00 am 8:45 am	DOE Full Committee Executive Session	
8:55 am	The Advanced Photon Source—Present and Future	
9:15 am	The APS Upgrade Project	Srajer
10:00 am	ES&H	Barkalow
10:15 am	Break	
10:30 am	APS-U Project Management	Kerby
11:15 am	APS-U Integration	Barkalow
12:00 pm	Lunch	
1:00 pm	Tour	
2:30 pm	Accelerator Systems	White
3:15 pm	Infrastructure and Enabling Technologies	
4:00 pm	Experimental Facilities	Haeffner
4:45 pm	Summary	Srajer
5:00 pm	DOE Full Committee Executive Session	_
6:30 pm	Adjourn	

DOE CD-2 Draft Agenda - Day 2 (December 5)

		Breakout Session - SC 1
		IDs, LSS, Diagnostics
8:00 AM	4:00	Detail Talks
12:00 PM	1:00	Lunch
1:00 PM	2:00	Detail Talks
3:00 PM	2:00	Executive Session
5:00 PM		end
		Breakout Session - SC 2 Accelerator
		Physics, SPX System
8:00 AM	4:00	Detail Talks
12:00 PM	1:00	Lunch
1:00 PM	2:00	Detail Talks
3:00 PM	2:00	Executive Session
5:00 PM		end
		Breakout Session - SC 3
		Ultrafast & Spectroscopy Beamlines
8:00 AM	4:00	Detail Talks
12:00 PM	1:00	Lunch
1:00 PM	2:00	Detail Talks
3:00 PM	2:00	Executive Session
5:00 PM		end

	Breakout Session - SC 4
	Diffraction Beamlines
4:00	Detail Talks
1:00	Lunch
2:00	Detail Talks
2:00	Executive Session
	end
	Breakout Session - SC 5
	Imaging Beamlines
4:00	Detail Talks
1:00	Lunch
2:00	Detail Talks
2:00	Executive Session
	end
	Breakout Session - SC 6
	Management
4:00	Detail Talks
1:00	Lunch
2:00	Detail Talks
2:00	Executive Session
	end
	1:00 2:00 2:00 4:00 1:00 2:00 4:00 1:00 2:00

DOE CD-2 Draft Agenda - Day 3 (December 6)

		Thursday December 6
		402/Lower Gallery
8:00 AM	1:00	Followup Questions
9:00 AM	4:00	Writing / Dry Run
1:00 PM	1:00	Committee Working Lunch
2:00 PM	1:00	Closeout
3:00 PM		END

Time Table to Complete Preliminary Design Report

- October 5: All edits on Beamline sections complete for review
- October 12: All edits complete for all chapters including responses to Director's Review and scope clarifications
- October 15: November 2 APS Management review of full PDR
- November 2-10: Incorporate edits from APS Management team
- November 10-20: Final document assembly
- November 20: All documents (final version) including the PDR posted for the CD-2 Review

Time Table for Practice Talks

- Hard deadline for all talks: November 27 (one week before CD-2)
- Templates will be provided: October 31
- Financials available: November 5
- November 5 16: Practice talks/Dry runs
- Last corrections: November 26
- Important: please practice your talks prior to November 5-16
 - Maximize efficiency and minimize frustration
- DOE CD-2 Review: December 4-6 → Most important review to date!
- APS has to perform well: there are other, competing BES projects!!