

Microcrystallography Developments at the APS and Around the World

Robert Fischetti X-ray Science Division and GM/CA Advanced Photon Source

Outline

- Statistical highlights
- Aspects of micro-crystallography
- Scientific highlights
- Automation
- SONICC
- Micro-beams and radiation damage
- APS-U (150 mA)
- Putting it all in perspective

Macromolecular Crystallography at the APS

Operator	BM Line	ID Line(s)			Technique
BIOCARs	14-BMC	14-ID			MX, Laue, TR scattering, BSL2/3
IMCA-CAT	17-BM	17-ID			MX, 17-BM: powder diffraction
SBC-CAT	19-BM	19-ID			MX
LS-CAT		21-IDD	21-IDF	21-IDG	MX, Bionano-probe
SER-CAT	22-BM	22-ID			MX
GM/CA	23-BMB	23-IDB	23-IDD		MX, 23-BMB: WAXS
NE-CAT		24-IDC	24-IDE		MX
LRL-CAT		31-ID			MX

Beamlines previously used for MX 5ID 8BM 14-BMD

Beamtime request continue to grow

APS world leader in Protein Data Bank depositions

Over 25% of all structures from synchrotron source are from APS

1000 PDB club

APS 1000 PBD club membership

- SBC-CAT has 3629 deposits since 1997
- SER-CAT has 1943 deposits since 2002
- BioCARS has 1108 deposits since 1998
- IMCA-CAT has 1943 deposits since 1998
- GM/CA has 1005 deposits since 2005
- NE-CAT has 982 deposits since 2004
- LS-CAT has 905 deposits since 2008

National 1000 PDB club membership

- 5 [+ 2] sectors at the APS
- 2 sectors at ALS
- 3 sectors at NSLS
- 2 sectors at SSRL

Micro-crystallography developments

On-axis sample visualization

Goniometer head nano-positoning

Quad mini-beam collimator: 5, 10, 20-μm beams and 300- μm scatter guard

Rapid beam size selection

ScatterGuard

EIA:

20um 10um

5um dle

JBluice-EPICS GUI

position on

Intensity

(Ph./sec)

2.0 x 10¹³

1.0 x 10¹²

5.2 x 10¹¹

5.4 x 10¹⁰

3.0 x 10⁹

			JBluice	e-EPICS: Bea	amline ID-D V	ersion 201	0.2 Build	2618	×		
<u>F</u> ile <u>N</u> etw	ork <u>O</u> ptions	<u>H</u> elp									
Hutch	Sample	Raster	Collect	Screenin	ig Scan	Users	Log				
Star	Ca	ncel	nega .000 .000	degr	entering Auto Centering 3Click Centering	⊙ Loop	O Crystal	Sum Clmtr \$ Sample Window H: 0.0050 V: 0.0050 V: \$		Beam size FWHM (µm)	(
Sample High 8.00	: Low Res Res Zoom	Sample: Hig	h Res Vi	ew Hutch S	ample: Tools	Diff. Image	e			20 x 65	
Rotate	e +-n	Move XY								20 Ø	
+9	180 0 -90									10 Ø	
+r HighR	es Intensity	•					•	an a		5 Ø	ļ
-Ringlig	ght Intensity		0.000							1 Ø	
Backli	ght OUT	•	000.0							mage of beam a sample position	nt O
Beam Co	ntrols	imator Control m 🕈	s OUT	IN V:4	4.48 H : -1.28	-Pindiode- OUT	IN	V : 135. IN OUT Take Snapshot	۱	AG crystal	
[15:31:50] NOTE: C	olCtl: move	OK!								
APS Curr State:	ent 89. Idle	1 Shutte ETA:	er Permit	Enabled MERGENCY S	A Shutter Mono:	Open 12.000 ke	Endstation V IZero:	Open Endstation Secure Yes 2.72 V Control: Active Shutter: Open	1		
	٢	Collimate	or Contr	ols							

Quad mini-beam collimator

- match beam and crystal size
- use small beam to probe large crystal

Finding/centering invisible crystals or mapping quality

utch Sample	Raster	Collect	Screening	Scan	Users	Lo	g				
ntrol	Position									1	
Start	Omega	= 125.802		-	_	-					_
Pause	Sample X	= 0.479									-
	Sample Y	= -0.443	and the second	1000		-					
Grid #s	Sample Z	= -0.947									
Smoothing	Atten	- 10 020	-				-	1		<u> </u>	
Position sync	Beamstop	= 34.999		-			-				_
Posicion sync	beamb.cop	- 541555		1 States							-
Run	1 (rasterin	g)	1 2	1	T	30	For			Carlos Rolling	
Default Upd	late Delete	Reset		Carro		28	2010				
Raster mode				-	the state					and the second	
Diffraction	O Fluor			- 6		-	-				
Prefix: csdl_rast	er 1			and the second			- And		and the second s		-
Dir: /mot/share				1 C. 101						and the second second	
Grid Width:		um					11		ME		
Grid Height:		Lim	100								
Cell Width:		um		-							
Cell Height:		um								COLUMN ST	
Time:	1.0	Sec	Status	X	×	Frame	Row	Cal	Spot Total	In Possiution To	tal
Delta:	1.000	dea	DONE	45.0	5.0	name	2	2	304	370	lai
Distance:	300.000	mm	DONE	-45.0	-5.0	31	3	10	394	378	
Attenuation:		factor	DONE	35.0	5.0	32	4	9	216	183	
Processing	7	ractor	DONE	25.0	5.0	33	4	8	472	453	
			PROCESSIN	G 15.0	5.0	34	4	7			
			WRITING	5.0	5.0	35	4	6			
			COLLECTIN	G -5.0	5.0	36	4	5			
			E		_						

Grid search developed at ID13

Big beam – beam sample implemented at SSRL (*J. Syn. Rad.* (2007) **14**, 1891-195)

GM/CA large-beam (coarse grid) and mini-beam (fine grid) implementation (*J. R. Soc.* (2009) Interface, **6**, S587-S597)

Diamond and now many others have implemented rastering Acta Cryst. D, **66**, 1032-1035 (2010)

> Ranking by "distl" Nick Sauter

M.Hilgart, R.Sanishvili, C.Ogata, M.Becker, N.Venugopalan, S.Stepanov, O.Makarov, J.L.Smith, and R.F.Fischetti, Automated sample scanning methods for radiation damage mitigation and diffraction-based centering of macromolecular crystals, JSR (2011) 18, 717-722

Polygon rastering

JBluice-EPICS: Beamline ID-B Version 2011.1 Build 3143												
<u>File N</u> etwork Op	tions <u>H</u> elp											
Hutch Sam	ple Raster	Collect	Screening	Scan L	Isers	Log						
Control	Display			Contraction of the local division of the loc								1
Start	🗹 Grid 🕯	#s			No.							
Pauso	Smoo	thing				; ; ; ; ;	-2.1					
Tause	🗹 Positi	on sync	. 1.		15 1	5 14 13 12	2 11 10 🔊	8	_			
	🗹 Show	beamsize	and have		21 2	5 25 24 23 6 25 24 23	3 22 21 20	19 18 1	7			
	Color ma	ap parameter		1000	30 3	o	5 52 51 50 5 42 41 40	39 38				
	Spot To	tal 🗘		Mar an	5	4 53 52 51	1 50 49 48	47			<u></u>	
Interactive	Auto				-	6	2 61 60 58	 8		57 56 5	B	
0	un 2 (complet	te)			-	78 77		74 73 72	2	C 9 64 6 71 70 6	5	
1 Default	Undate Delete	Pacat		97 93 95	94 9	2 32 91 90	99 EE	87 86 8	5 84 85 6	2 81 80 7	1	
2 Raster mor	opuate Delete	Keset		261151141)7	120001000	0210210712	(105 1))	410310210	1100 97 9	8	_	
* Diffracti	on O Fluor			321301307.291	1312712312	51.2411.23	122	13512515				
				1461451441	43			14	2			
Prefix: MH_F				1 501491481	17	100			-			
Dir: //mnt	/share1/user0/Nukri/			1 541531521	51							
Polygo	ns: Seven	+ - C			5							
Cell si	ze: 20 x 20	μm										
Beam si	ze: 20 x 20	μm										
Tir	ne: 1.0	sec	Status	х	Y	z	Omega	Frame	Row	Col S	pot Total	
De	lta: 1.000	deg	DONE	0.920	-0.112	-5.606	-0.000	152	16	4	538	
Distan	ce: 200.000	mm	DONE	0.920	-0.112	-5.586	-0.000	153	16	3	156	
Attenuat	on: 10.00	factor	DONE	0.920	-0.112	-5.566	-0.000	154	16	2	54	
Processi	ng: 🗹		DONE	0.920	-0.092	-5.626	-0.000	155	17	5	34	
			DONE	0.920	-0.092	-5.606	-0.000	156	17	4	83	
			DONE	0.920	-0.092	-5.586	-0.000	157	17	3	453	Ξ
			DONE	0.920	-0.092	-5.566	-0.000	158	17	2	357	▪
[13:07:28] NOT	E: ColUtri: collim		DOK!	buttor On		detation C	huttor 🗖	Onen	Endet-t	ion Coorre		V
APS Current	102.4 Shutter	Permit E	habled A S	nutter Op	en En	ustation S	nutter	Open	Endstat	ion Secur	e Yes	
State: Id	Ie ETA:	EM	ERGENCY STOP	Mono: 12.	000 keV	IZero:	0.04 V	Control:	Active	Shutte	r: Close	d

Coordinates can be transferred automatically for data collection

M.C. Hilgart, R. Sanishvili, C.M. Ogata, M. Becker, N. Venugopalan, S. Stepanov, O. Makarov, J.L. Smith and R.F. Fischetti J. Synchrotron Rad. (2011). 18, 717-722

Fluorescence rastering - fast slew scan mode

Slew mode ~30 sec

The cell and the beam size are 20µm.

Fast fluorescence techniques for crystallography beamlines Stepanov, S., Hilgart, M., Yoder, D., Makarov, O. Becker, M., Sanishvili, R., Ogata, C., Venugopalan, N., Aragão, D., Caffrey, M., Smith, J.L. and Fischetti, R.F. Acta. Cryst. D., **44**, 772-778, (2011).

AutoFind

- Produces a search area (polygon) definition
 - First performs optical centering if needed
 - Takes four images at angles 0, 30, 60, 90
 - Uses XREC to generate loop outline
 - Sets the sample to face-on orientation
 - Total time is about 40 seconds
- Adds a critical link from screening to analysis
- The next step in automation is to link this to the screening tab

AutoFind automatically generates a search polygon

Dealing with radiation damage automated collection along a user defined vector

Efficient use of large homogeneous crystals

Mark Hilgart and Craig Ogata

Strategy Extended

- Multiple potential space groups are displayed with their associated strategy calculations
 - Solutions for each space group are computed in parallel
- Anomalous and inverse beam modes are supported
- MOSFLM or BEST can be chosen as the strategy program

utch Sample	Screening	g Raster S	Scan Collect	Analysis Users	s Log
ffraction Strate	ду			Collect	Run 0 (inactive)
			Europe All		Copy Update Delete Reset
<< <	>	>> 101/	Export All	Pause	Collect Param
trategy All Res	sults			Current position	Prefix: test
	D	one		Detector = 800.	000 Dir: /home/mhilgart
Dire	/mnt/share2/	/test1	A	Attenuation = 1.00	0 Distance: 800.000 ▼ mm
511:			T	Beamstop = 30.5	00 Atten.: 1.00 ▼ factor
varning.			<u> </u>	Resolution Predictor	Site: None
varning.			y	4.65	Beam size: 43 x 43 µm
mages:	test_1.0001	test_1.0091		6.52	Delta: 1.00 deg
pace group:	(2) P121 P12	11>57.62,89.26,6	2.83,90.00,10		Time: 1.00 sec
	 Native 	 Anomalous 	 Inverse 		Frame Gonio
)sc. start:	104.00	85.00	104.00	Run sequence >>	Start: 001 0.00 🔻
1in. Coverage:	190.10	210.45	190.10	Filename Angle	En
Dsc. end:	190.10	335.90	190.10	test_0.0001 0.00	1: Strategy
Completeness:	98.53%	96.96%	98.53%		Energy: 13.6240 keV
sc. delta:	0.70				
Det. dist.(pred):	477.9				
les. (pred):	3.41 A				
losaicity:	N/A				
Jnit cell:	57.62 89.26	62.83 90.00 109.	65 90.00		
	1	1			
Create run 1	Export	to rún 0	Solution		
02-411 NOTE- I	Jnknown com	mand: setGraph	XLimit 12628.5	0 12687.50	

Analysis Tab

- XDS, POINTLESS, SCALA and TRUNCATE are run automatically in the background as each collect run completes
- Results populate the analysis tab as they finish
- Previous results can be flipped through using back/forward arrows
- An overview is shown along with graphs on the right
- Full text logs are available by clicking buttons at the bottom

JBlulce-EPICS publications

Cherezov, V., Hanson, M.A., Griffith, M.T., Hilgart, M.C., Sanishvili, R., Nagarajan, V., Stepanov, S., Fischetti, R.F., Kuhn, P. and Stevens, R.C. (2009) Rastering strategy for screening and centering of microcrystal samples of human membrane proteins with a sub 10 micron size X-ray synchrotron beam, J. R. Soc. Interface, 6 Suppl 5:S587-97 PMCID 2843980

Stepanov, S., Makarov, O., Hilgart, M., Pothineni, S., Urakhchin, A., Devarapalli, S., Yoder, D., Becker, M., Ogata, C., Sanishvili, R., Nagarajan, V., Smith, J.L. and Fischetti, R.F. (2011) JBluIce-EPICS control system for macromolecular crystallography,

Acta. Cryst. D67, 176-188 PMCID 3046456

Stepanov, S., Hilgart, M., Yoder, D., Makarov, O., Becker, M., Sanishvili, R., Ogata, C., Venugopalan, N., Aragão, D., Caffrey, M., Smith, J.L. and Fischetti, R.F. (2011) Fast fluorescence techniques for crystallography beamlines, J. Appl. Cryst., 44, 772-778

Hilgart, M., Sanishvili, R., Ogata, C., Becker, M., Venugopalan, N., Stepanov, S., Makarov, O., Smith, J.L. and Fischetti, R.F. (2011) Automated sample scanning methods for radiation damage mitigation and diffraction-based centering of macromolecular crystals,

J. Synchrotron Rad. 18, 717-722 doi:10.1107/S0909049511029918

Video tutorials on-line and code is available for download

GM/CA co-sponsors with CCP4 a "hands on" school

www.gmca.aps.anl.gov

GPCR Highlights from 2012 GM/CA

A pair of u-opioid receptors

HIT HOME

Other Membrane Protein Publications

- Liao, J., ..., and Jiang, Y. (2012), Science 335, 686-690.
 Sodium/calcium exchanger
- Brohawn, S. G., ..., and MacKinnon, R. (2012) , Science 335, 436-441.
 Human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel
- Whorton, M. R., and MacKinnon, R. (2011) , Cell 147, 199-208.
 Mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium
- Uysal, S., ..., Kossiakoff, A. A., and Perozo, E. (2011), Proc Natl Acad Sci U S A 108, 11896-11899.
 Activation gating in the full-length KcsA K+ channel
- Shi, N., ..., and Jiang, Y. (2011), J Mol Biol 411, 27-35.
 Determinants of K channel conductance and gating.
- Sauer, ..., and Jiang, Y. (2011), Proc Natl Acad Sci U S A 108, 16634-16639.
 Protein interactions central to stabilizing the K+ channel selectivity filter.
- Derebe, M. G., ..., and Jiang, Y. (2011), Proc Natl Acad Sci U S A 108, 598-602.
 Tuning ion selectivity of tetrameric cation channels by changing the number of ion binding sites
- Noinaj, N., ..., and Buchanan, S. K. (2012), *Nature 483, 53-58.* Structural basis for iron piracy by pathogenic Neisseria
- Fairman, J. W., ..., Cherezov, V., and Buchanan, S. K. (2012), Structure 20, 1233-1243.
 Outer Membrane Domain of Intimin and Invasin from Enterohemorrhagic E. coli and Enteropathogenic Y. pseudotuberculosis
- Oldham, M. L., and Chen, J. (2011), P Natl Acad Sci USA 108, 15152-15156.
 Maltose transporter during ATP hydrolysis
- Symersky, J., ..., and Mueller, D. M. (2012), Nat Struct Mol Biol 19, 485-491
 c(10) ring of the yeast mitochondrial ATP synthase in the open conformation
- Tiefenbrunn, T., ..., and Cherezov, V. (2011) , *PLoS One 6*, e22348.
 ba3 cytochrome c oxidase from Thermus thermophilus in a lipidic environment

Crystal structure of the Na+/Ca2+ exchanger embedded in a membrane bilayer

Thomas Schwartz (MIT): Structure of nucleoporin complex components

Space group P2₁, *a*=52, *b*=78, *c*=59Å, β=106^o

NE-CAT

Automounter usage at GM/CA (% of user visits vs. APS trimester)

Over 90% of groups use the automounter

Over 40% collect data remotely

ightarrow 5000 mounts/APS run cycle/beamline

Berkeley Automounters (T. Earnest and C. Cork) Larger Dewars Increased throughput **Reduced vibrations**

BAM-1 GM/CA modified Cartesian

BAM-2 GM/CA Cartesian

Automated alignment

Benefits:

SER-CAT Cartesian w/ dual-Dewars

Do I have a crystal? Where is it?

Chris Dettmar

SONICC on the beamline

Mike Becker & Chris Dettmar

Faster, higher sensitivity detectors

CAT upgrades	
BioCARS	Fast-CCD (on order)
IMCA	Pilatus 6M
SER-CAT	FAST-CCD (delivery soon)
GM/CA	Pilatus3 6M (on order)
NE-CAT	Pilatus-F 6M

Pilatus3 6M

- Improved dead time correction
- High count rate (10 MHz)
- High frame rate (100Hz)
- Improved efficiency with thicker sensor

Microfocus Upgrade Motivation

Provide more intensity for challenging projects
Membrane proteins in meso-phase
Small (5-10 μm) and weakly scattering crystals
Provide routine access to microfocus beam - ~1 μm
Exploit APS high energy source properties
Provide high energy and/or small beams
Study radiation damage at higher energies

Microfocus Upgrade Optical Specifications

Optical Specifications

Beam size (FWHM):

micro-beam mode $\,$ - beam size can be varied from 1 – 5 μm in a few seconds mini-beam mode - beam size can be varied from 3 – 20 μm in a few seconds mode switch <10 minutes

```
Energy range: 6 – 35 keV
using Si(111) and Si(333)
or Si(311)
```

Harmonic rejection >10² existing KBM system will provide sufficient harmonic rejection

Intensity in 1 μ m beam at sample position: 2 × 10¹⁰ photons/s, < 500 μ rad² @ 12.0 and 18.5 keV 5 × 10¹⁰ photons/s, < 1000 μ rad² @ 12.0 and 18.5 keV Increase mini-beam intensity 5-fold over current 23-ID-D

Positional stability: 10% RMS of focal size, 1 – 100 Hz Intensity stability: 1% RMS noise, 1 – 100 Hz

Microfocus Upgrade Layout

Microfocus Upgrade: Intensity vs. Energy

Air bearing performance

precision air bearing positioning

Final Thingap RT125-M-013, Vertical, 4" from Face

SOC measurements

- 100 mm off face
- peak-to-peak
- mostly synchronous error

Intensity loss as a function of beam size and dose

1-µm 1.00 Normalized Integrated Intensity 2-µm • 3-µm 0.95 5-μm ▲ 10-μm • 15-µm 0.90 ·100-μm 0.85 0.80 0.75 0.0E+00 1.0E+07 2.0E+07 3.0E+07 4.0E+07 Dose (Gy)

Damage decreases 3-fold with beam size

Distribution of damage is wider than beam

	HWHM (µm)	Ratio
Beam profile	0.42	1.0
Horizontal distribution	2.02	4.8
Vertical distribution	1.19	2.8

Mitigation of Radiation Damage Using Line Focus Beam

- A new strategy to reduce primary X-ray damage in macromolecular crystallography uses the basic principle of separating, as much as possible, the X-ray irradiated region, where the diffracted signal originates, from the region where damage accumulates.
- Photoelectrons causing radiation damage accumulate predominantly outside the irradiated region of the crystal exposed with a line focused beam leading to a 4.5 factor decrease in radiation damage.

Plots of the measured lens focus profile, spatial dependent damage, the deconvoluted spatial dependent damage, and the spatial dependent data with the probing damage removed. Simulation

A 2.6 x 10⁶ Gy Z **B** 5.3 x 10⁶ Gy C 8.8 x 10⁶ Gy

Electron density maps contoured at 3 σ for the region near C64-C80 disulfide bridge of three lysozyme structures determined from the data obtained with 19ID line focus beam at three different doses.

Stern, Joachimiak et al., 19ID, 2012

Comparison of Monte Carlo simulations and our data

33

APS-Upgrade

Benefits of the APS Upgrade

Increased beam current

Pro - Increase intensity in to focus

Con - Additional heat load on DCM

Improved beam stability

Pro - Better spatial and/or temporal stability

Con - N/A

New revolver undulator

Pro – better match spectrum to experiment

Con - \$\$

APS-Upgrade - higher current (continued)

Operating micro-crystallography beamlines

Facility & beamline	Target beam size	Energy range	Approach
APS 23ID-B	5, 10, 20 µm	3.5-20 keV	Aperture
APS 23ID-D	5, 10, 20 μm	5-20 keV	Aperture
APS 17ID-B	10, 20 µm	6-20 keV	Aperture
APS 19ID	5, 10, 20 μm	6-17 keV	Aperture
APS 24ID-E	5-20 µm	12.66 keV	Aperture
APS 31ID	20 µm	9-13.8 keV	Aperture
Australia MX2	10 µm	5.5-28 keV	Aperture
CHESS A1	<20 μm	12.68 keV	Direct focus
CHESS F1	<20 µm	13.50 kev	Direct focus
CHESS F2	<20 µm	7-16 keV	Direct focus
Diamond I02	20 µm	5-25 keV	Aperture
Diamond I03	20 µm	5-25 keV	Aperture
Diamond I04	2x8 μm ²	13.1, 7.15 keV	Aperture
Diamond I24	7-10 µm	6.5-18 keV	Secondary source
ESRF ID13 EHII	1 µm	5-17 keV	Direct focus
ESRF ID23-2	10 µm	14.2 keV	Direct focus
ESRF ID29	10, 20 µm	6-20 keV	Aperture
Photon Factory BL-17A	20 µm	5.9-13.8 keV	Aperture
Photon Factory BL-1A	10 µm	2.7-3.0 keV	Aperture
SPring-8 BL32XU	1-10 µm	8.5-20 keV	Divergence-limited source
SPring-8 BL41XU	10 µm	6.5-35 keV	Aperture
SLS X06SA	(15)x5 µm ²	5.7-17.5 keV	(Aperture) direct focus
SSRL 12-2	7, 10, 20 μm	6.7-17.2 keV	Aperture

All dimensions are FWHM. (HxV) Selectable beam sizes are designated by comma-separated discrete sizes or by a size range. Beamlines with beams of dimension 20 μ m or smaller; some also produce larger beams.

Micro-crystallography beamlines - under development

Beamlines in process			Status
ALBA BL13	300x7 µm ²	5-21 keV	Commissioning
Diamond I02	20, 10 µm	7-17 keV	Commissioning
Diamond I03	20, 10 µm	7-17 keV	Commissioning
Diamond I04	20, 10 µm	7-17 keV	Commissioning
PETRA III MX1	5, 10 μm; 28x13 μm ²	5-17 keV	Commissioning
PETRA III MX2	4x1 μm ²	7-35 keV	Commissioning
APS 23ID-D	1-20 μm	6-35 keV	Construction
NSRRC PX	1-50 μm	5.7-20 keV	Construction
SOLEIL PX2	20 μm ²	5-15 keV	Construction
SSRF NFPS	10x5 μm ²	5-18 keV	Construction
MAX IV BioMAX	20 µm	5-25 keV	Design
NSLS II FMX	1-100 µm	5-20 keV	Design
NSLS II AMX	5-300 μm	5-25 keV	Design
NSLS II NYX	5-50 μm	3.5-17.5 keV	Design

GM/CA@APS Staff

Thank you for your attention

www.gmca.aps.anl.gov

From left to right: Mark Hilgart Craig Ogata Robert Fischetti Sergey Stepanov Dale Ferguson Janet Smith Oleg Makarov Shenglan Xu Michael Becker and Sudhir Babu Pothineni

Insets left to right: Sheila Trznadel Ruslan (Nukri) Sanishvili Naga Venugopalan and Stephen Corcoran

Thank you for your attention

www.gmca.aps.anl.gov