X-ray Illumination in Solar Energy Conversion: Highlights of ANSER EFRC Work at the APS

> Argonne-Northwestern Solar Energy Research (ANSER) Center

David M. Tiede Chemical Sciences and Engineering Division Argonne National Laboratory

http://www.ANSERCenter.org

ANSER Center Institutions

27 Pl's Total

The ANSER Center joins established strengths at Northwestern University and Argonne National Laboratory (ANL) with those of senior personnel at Yale University, the University of Illinois at Urbana-Champaign, and the University of Chicago (UC) in molecular and nanostructured assemblies, materials, catalysts, and phenomena integral to solar energy conversion and storage.

ANSER Research Subtasks

Subtask 1 Bio-inspired Molecular Materials for Solar Fuels

<u>Tiede, Ratner</u> Batista, Brudvig, Crabtree, Rauchfuss, Stupp, Wasielewski Subtask 2 Interface Science for Organic Photovoltaics

<u>Marks, Chen</u> Chang, Freeman, Hersam, Mason, Poeppelmeier, Poluektov, Yu

Subtask 3 Nanostructured Architectures for Photovoltaic and Solar Fuels Energy Conversion Hupp, Kanatzidis

ANSER

Pellin, Elam, Martinson, Schatz, Odom, Wiederrecht

Develop a Fundamental Understanding of

- the interaction of light and charge with molecules and materials
- the energy levels and electronic structures of molecules and materials
- the dynamics of photoinduced charge generation, separation, and transport with unparalleled temporal and spatial resolution
- the interfaces at which charge generation, separation, transport, and selective chemical reactions occur
- the properties of unique materials, from self-assembling, bio-inspired materials for hydrogen fuel production from water to transparent conductors and nanostructured hard and soft materials for solar electricity generation.

- ANSER Center research is noted for placing a strong emphasis on combining cutting-edge time-resolved spectroscopic and structural techniques, e.g. x-ray, laser, EPR, to understand the mechanistic details of solar energy conversion to both *fuels and electricity*.
- This is made possible by ANSER's unique personnel portfolio, which includes a critical mass of researchers with strong backgrounds in both structure and spectroscopy as well as synthesis and materials fabrication.
- The ANSER Center focuses on both solar *fuels* and *electricity* using complementary approaches that provide solutions for both technologies.
- The ANSER Center focuses on multiple, hierarchical approaches to these problems with the goal of providing a fundamental science support base for DOE's Energy Innovation Hub, JCAP.

APS in ANSER Research

Subtask 1 Bio-inspired Molecular Materials for Solar Fuels

<u>Tiede, Ratner</u> Batista, Brudvig, Crabtree, Rauchfuss, Stupp, Wasieland

> Focus: • Light-driven transition metal catalysis • Time-resolved

X-ray spectroscopy (XANES, XAFS) X-ray scattering (HEXS-PDF) Organic Photovoltaics Marks, Chen Chr Hersam, Mason, uektov, Yu Focus: • Light-driven charge separation • Thin film materials, interfaces

Subtask 2

Interface Science for

Nanostructured Architectures for Photovoltaic and Solar Fuels Energy Conversion <u>Hupp, Kanatzidis</u> Pellin, Elam, Martinson, Schatz, Odom, Wiederrecht

Subtask 3

ANSER

Grazing incidence X-ray scattering (GISAXS)

Subtask 1: Bio-inspired Molecular Materials for Solar Fuels Subtask 1 Leaders: David Tiede (ANL) and Mark Ratner (NU)

Subtask 1 Members:

Gary Brudvig & Bob Crabtree (Yale) ⇒ design, synthesis & characterization of water-oxidation catalysts

Tom Rauchfuss (UIUC) ⇒ design, synthesis & characterization of proton-reduction catalysts

Victor Batista (Yale) & Mark Ratner (NU) ⇒ theoretical characterization

Sam Stupp & Mike Wasielewski (NU)

- \Rightarrow self-assembly of light-harvesting and catalytic modules
- \Rightarrow develop light-harvesting & charge separation modules wired to catalysts

Lin Chen, Oleg Poluektov & David Tiede (ANL)

spectroscopic and structural characterization

http://www.ANSERCenter.org

Scope of work:

Homogeneous: molecular, solutionInhomogeneous: thin films

Experiment:

Water-oxidation catalysts: e- source, O₂ evolving

- Ir-Cp* complexes solution (Crabtree, Brudvig groups, Yale)
- Ir-oxide electrode films (Crabtree, Brudvig groups, Yale)
- 1st row transition complex models (Crabtree, Brudvig groups, Yale)

Water-reduction catalysts: H₂ fuel evolving

- Fe-Fe hydrogenase mimics (Rauchfuss group, UIUC)
- Co-Cp complexes (Rauchfuss group, UIUC)
- "Dubois" Ni catalysts (Tiede, ANL and Wasielewski group, NU)

Hierarchical assemblies: i.e., linked to light

- Photosensitizer-catalyst assemblies (Wasielewski group, Subtask 1)
- Semiconductor-catalyst/photosensitizer (Yale group, Subtask 3)

Theory:

 Use of X-ray structural data for testing/development of coordinate models (Batista, Yale)

J. Blakemore, R. Crabtree, G. Brudvig, Yale University

Same slope: stoichiometric oxygen evolution

Best O₂ catalyst to-date

J. Blakemore, R. Crabtree, G. Brudvig, Yale University

Highly active watersplitting catalyst amorphous film (\$0.45 per ft²!)

SEM:

- Amorphous
- Insoluble film
- Difficult to characterize
- Reoccurring motif: "heterogenized" solar catalyst films

J. Blakemore, R. Crabtree, G. Brudvig, Yale University

Highly active watersplitting catalyst amorphous film (\$0.45 per ft²!)

Mechanistic questions:

- What is this film?
- How did it form?
- How and why does it work so well?
- Can concepts here be used for development of 1st row transition metal catalysts? (feedback to cat. synthesis: Yale, UIUC, NU)

Solar Fuels Catalysts X-ray Characterization

Approach: Multiple length-scale, *in-situ* Structure Characterization:

- a) X-ray absorption spectroscopy (XAS) and fine structure (XAFS)- Lin Chen
 - Metal atom oxidation state
 - Electronic structure
 - Inner sphere atomic structure

b) High Energy X-ray Scattering (HEXS) and Pair Distribution Function (PDF) Analyses- D. Tiede

- Inner and outer sphere atomic structures
- Ensemble structure
- Solvent interactions

Combination:

- Enables Multiple Length-Scale Structure Characterization
- Relate *in-situ* structure to catalysis \rightarrow mechanism, design
- Extendable to pump-probe time-resolved:
 - follow the trail: electron transfer, structure, function

Multi-Scale addressed theoretically

QM-MM/MD model [Fe(bpy)₃]-₂ in water Daku and Hauser, JPC. Lett. (2010) <u>1</u>:1830

- IrCp* precursor was electrodeposited onto the graphite working electrode at 1.4 V
- Precursor solution was replaced with 0.1 M KNO₃ solution and film structure was varied as a function of applied voltage

Ir(III)

Ir(IV)

 $Ir(V)^{\dagger} \rightarrow catalysis$

Metal-centered structure change linked to catalysis

M. Mara (NU) J. Huang (ANL) L. Chen (ANL-NU) J. Blakemore (Yale) G. Brudvig (Yale)

Find:

- No accumulation of Ir(V) with on-set of catalysis
- Coordination structure change linked $Ir(III) \rightarrow Ir(IV)$ redox transition
- CW echem technique not capture transition state(s) !

Voltage-Dependent Structural Changes

M. Mara (NU) J. Huang (ANL) L. Chen (ANL-NU) *J. Blakemore (Yale) G. Brudvig (Yale) R. Crabtree (Yale)*

- Oxidation state driven changes $Ir(III) \rightarrow Ir(IV)$:
- Ir-O bridging and Ir-Ir distances decrease
- Ligand geometry: *di-to-tris-µ-oxo*

Structural Parameters		
	200 mV	1200 mV
Ir-O (bridging)	1.97 Å n = 2	1.94 Å n = 3
Ir-O (terminal)	2.11 Å n = 4	2.11 Å n = 3
lr-Ir	3.02 Å	2.99 Å
Ir-O (outer)	3.81 Å	3.73 Å

 Metal-centered, inner sphere structure characterization

Characterization of multi-scale structure in BL: HEXS-PDF

D. Tiede (ANL) O. Kokhan (ANL) J. Blakemore (Yale) G. Brudvig (Yale) R. Crabtree (Yale)

High Energy X-ray Scattering (HEXS):

- 60 keV to 100 keV X-rays
 - High energy synchrotron X-ray light sources (APS)
- Offers highest resolution (d ~ 0.15 Å) PDF analysis

Pete Chupas Karina Chapman APS Beamline 11-ID-B

Characterization of multi-scale structure in BL: HEXS-PDF

D. Tiede (ANL) O. Kokhan (ANL) J. Blakemore (Yale) G. Brudvig (Yale) R. Crabtree (Yale)

 ANSER taking lead in developing combined XAFS/HEXS analyses approaches for solar fuels catalysts

XAFS:

- Metal-centered, exclusive
- Distance phase (path) sensitive

HEXS:

- All atom
- Distance phase (path) independent
- Multi-scale 0.1 Å to 100s nm

Combination:

- Two independent direct measures of structure
- Two different "selection" rules (*i.e.*, complementary information)
- Enhanced resolution of structure

Characterization of multi-scale structure in BL: HEXS-PDF

D. Tiede (ANL) O. Kokhan (ANL) J. Blakemore (Yale) G. Brudvig (Yale) R. Crabtree (Yale)

HEXS of solution-state IrCp* complexes

HEXS of solution-state IrCp* complexes

Victor Batista:

First Principles Modeling of Ir Blue Layer Film: Benchmarking to X-ray Data

- Simulated annealing, Monte Carlo (MC)
- Density functional theory (DFT) calculations
- Comparison to analogous coordination chemistry

- Comparison of model PDF to experimental G(r) suggests BL can be described as 1:1 combination of structures I and II. Introduces:
 - Carboxyl bridged Ir-Ir
 - Acid-base chemistry for proton-coupled electron transfer catalysis
- This is the start of 1st principles modeling. On-going work developing further support for this model
- Mark Ratner: presentation

Substituted FeFe complexes for enhanced H₂ catalysis and stability T. Rauchfuss, UIUC

Novel Synthetic Routes to Hydrogen-Evolution Catalysts

 Titanocene carriers for dithiolate complexes

Phosphine FeFe derivatives

- Enhanced metal-carbonyl bonding
- Enhanced photostability

FeFe hydrides for photosensitized and photochemical hydrogen production

 Amanda Smeigh presentation M. Wasielewski (NU) OC H Ph_2 $[HFe_2(pdt)(dppv)(CO)_4]^+$ $HFe_2(pdt)(PMe_3)_2(CO)_4]^+$ H^+ H^+ H^+ D^+ D^+ D^+ D^+ Fe(l)Fe(l) H^- PET Fe(l)Fe(0) H^- Fe(l)Fe(0)

CO

co

Fe(bda)(CO)₃

Multiple length-scale X-ray structural characterization

10 -

Combined XAFS and HEXS DiFe-Hydride

D. Tiede J. Huang M. Mara L. Chen W. Wang T. Rauchfuss T. Ph₂

<u>New</u> opportunities *in-situ*, high-resolution structure characterization:

- Model structure refinement
- Catalysis-linked coordination change

<u>New</u> opportunities *in-situ*, high-resolution structure characterization:

- Model structure refinement
- Detailed catalysis-linked coordination structure change

<u>New</u> opportunities *in-situ*, high-resolution structure characterization:

- Model structure refinement
- Detailed catalysis-linked coordination structure change

Conclusions: Solar Fuels Catalyst X-ray Characterization

- Combined XAS-HEXS provides multi-scale measure structure
- New opportunities in-situ, high-resolution structurefunction analyses:
 - Model structure refinement
 - Measure detailed, catalysis-linked coordination structure change
 - Applicable to both *in-situ* homogeneous and heterogeneous catalysis
 - Unique feature of ANSER:
 - multi-scale atomic approach to solar fuel catalyst structure-function analysis
 - Provide quantitative benchmarks modeling, solar catalyst design iteration

- XAFS-HEXS determined structure for water-splitting, water-reduction catalyst theory (Batista, Ratner), design, synthesis (Brudvig, Crabtree, Rauchfuss)
- Real-time and Pump-probe time-resolved, in-situ X-ray characterization: structure following single-turnover, sequential single-electron transfer chemistry. Capture intermediate state structures (Chen, Tiede)

Multi-scale (XAFS-HEXS) characterization of hierarchical assemblies

- Subtask 1 Linked photosensitizer-catalyst assemblies (Wasielewski, Brudvig, Crabtree, Rauchfuss, Stupp)
- **Subtask 2 TCO films (Mason, Chang, Poeppelmeier)**
- Subtask 3 Chalcogel-based films (Kanatzidis)

- XAFS-HEXS determined structure for water-splitting, water-reduction catalyst theory (Batista, Ratner), design, synthesis (Brudvig, Crabtree, **Rauchfuss**)
- **Real-time and Pump-probe time-resolved, in-situ X-ray characterization:** structure following single-turnover, sequential single-electron transfer chemistry. Capture intermediate state structures (Chen, Tiede)

Multi-scale (XAFS-HEXS) characterization of hierarchica

- Subtask 1 Linked photosensitizer-catalyst assemblies (Wasielewski, Brudvig, Crabtree, Rauchfuss, Stupp)
- Subtask 2 TCO films (Mason, Chang, Poeppelmeier)
- Subtask 3 Chalcogel-based films (Kanatzidis)

..... Questions, Comments?

Proposed Mechanism for Oxygen Evolution

James Blakemore, Brudvig, Crabtree et al. (2010) J. Am. Chem. Soc. 132, 16017.