

Possibilities for a Very Large Storage Ring Light Source

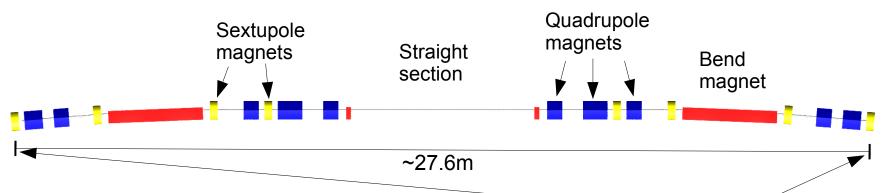
Michael Borland

Argonne National Laboratory

March 28, 2012

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

Outline

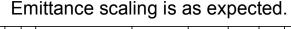

- Motivation for this work
- Emittance in electron rings
- Present and near-future rings
- Possible Tevatron-sized light source
- What's stopping us?

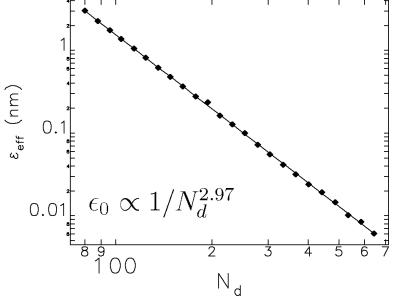
Strengths of Rings as Light Sources

- Storage rings light sources are extremely successful scientific facilities
 - Many thousands of users per year from dozens of scientific disciplines
- There is a good reason for this
 - Wide, easily-tunable spectrum from IR to x-rays
 - High average flux and brightness
 - Excellent stability
 - Position and angle
 - Energy and intensity
 - Size and divergence
 - Pulse repetition rates from ~300 kHz to ~500 MHz
 - Large number of simultaneous users
 - Excellent reliability and availability
- Reasonable to investigate a new generation

Contemporary Storage Ring Light Sources

- Most rings are highly periodic and symmetric
 - APS cell is a typical Chasman-Green configuration
 - Often such cells tuned as double-bend achromat (DBA)


- Straight sections all-important for modern rings
 - Typically 20~50, each 5~10 m long
 - Often dispersion-free
 - Undulators/wigglers in most
 - Rf cavities, injection pulsed magnets

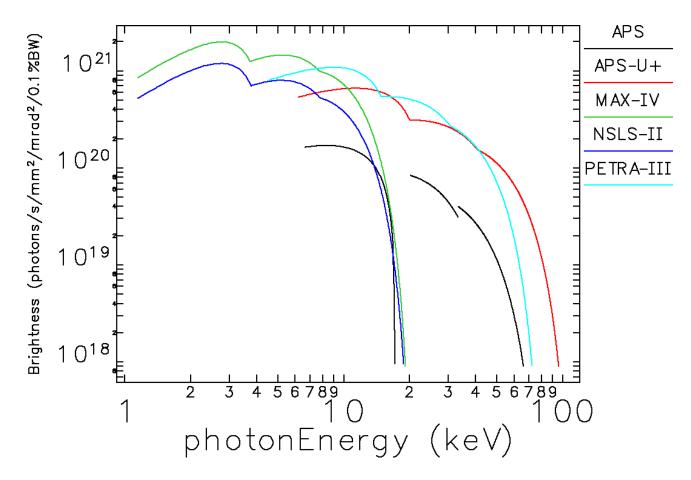

Methods of Decreasing Emittance

- To decrease the natural emittance, we can
 - Reduce the energy
 - Changes spectral reach and limits bunch charge
 - Employ stronger or more frequent focusing
 - More chromaticity
 - Nonlinear dynamics issues
 - Increase damping
 - Damping wigglers need space and increase power consumption
- A useful approximation¹ $E(x = 1, t \neq i, x) = \frac{E_0^2}{E_0^2}$

$$\epsilon = F(\nu_x, \text{lattice}) \frac{E_0}{J_x N_d^3}$$

Used **elegant** to simulate scaling APS to larger circumference by adding more fixed-length cells.

¹J. Murphy, Light Source Data Book, BNL.

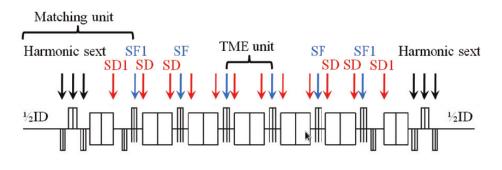

Near-Term Outlook

- From 1990's onward, emittance pushed to few nm
 ESRF, APS, SPRING8, ...
- New rings pushing to 1 nm and below
- PETRA III¹
 - Converted high-energy physics ring
 - Now world-leading 6 GeV, 1 nm light source
 - Large circumference with damping wigglers
- NSLS-II²
 - 3 GeV, 0.5 nm ring, construction well underway
 - "Large" circumference DBA with damping wigglers
- MAX IV³
 - Planned 3 GeV, 0.24 nm ring, beginning construction
 - "Small" circumference 7BA with damping wigglers

¹K. Baleski *et al*, DESY 2004-035, 2004.

- ²J. Ablett *et al*, NSLS-II CDR, 2006.
- ³S.C. Leeman *et al.*, PRSTAB **12**, 120701 (2009).

Brightness of a Few Present and Planned Rings

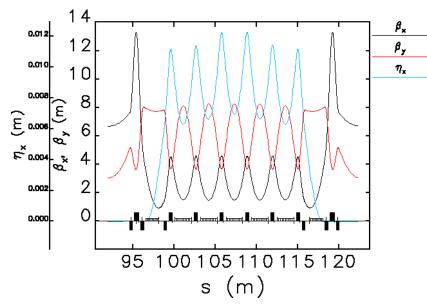


- APS curve assumes existing 4.8m long U27
- Others assume maximum length SCU20 (future 1.25T device¹)
- Used best published electron beam parameters, with 1% coupling
- First three harmonics shown only

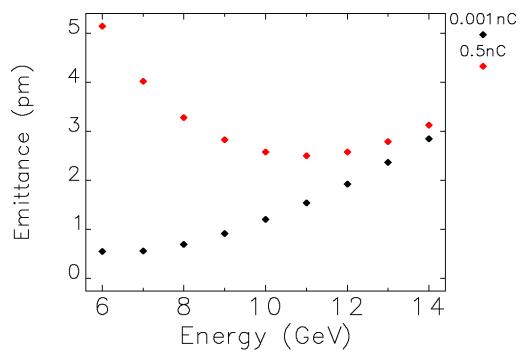
¹R. Dejus, private communication.

Exploratory "TevUSR" Lattice

- All lattice modules are taken from the PEP-X design^{1,2,3}
 - N=30 MBA cells in each of six arcs
 - N_d=1260
 (N_d=80 for APS)
 - 180 ID straight sections (!)

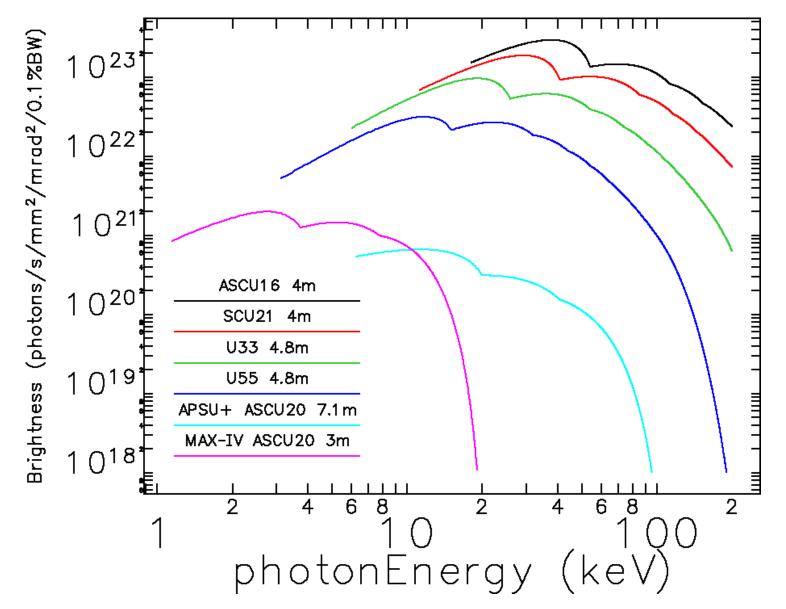

- Long straight sections use FODO cell
- Six matching quads between arc and FODO cells
- Differences from PEP-X design
 - Larger bending radius
 - Higher energy for shorter damping time
 - No high-beta insertion needed (on-axis injection)
 - Ignore (weak) vertical undulator focusing at this stage

¹M.-H. Wang *et al.*, Proc IPAC11, THPC074.

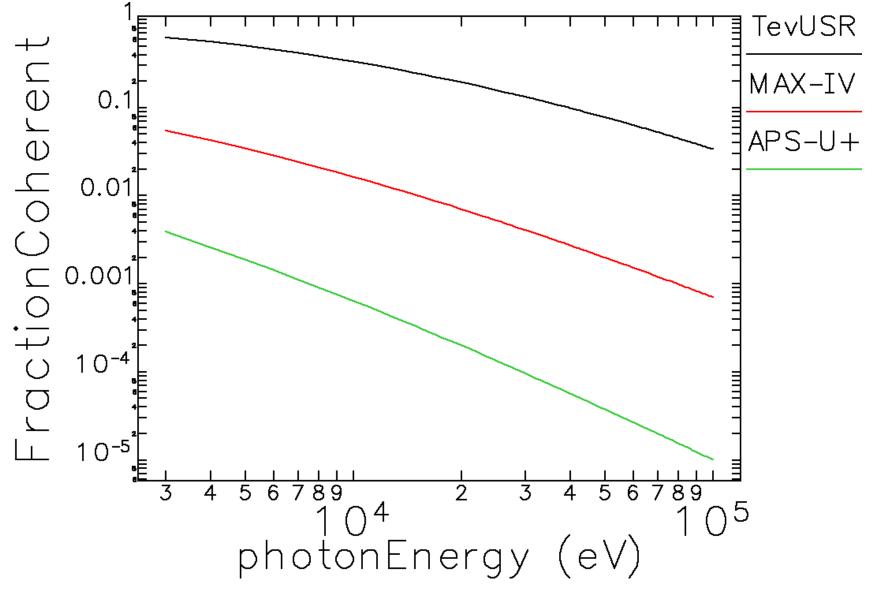

- ²Y. Nosochkov *et al.*, Proc. IPAC11, THPC075.
- ³Y. Cai, NIM A 645:168-174 (2011).

10 GeV Lattice w/o Damping Undulators (DUs)

Quantity	Value	Unit
Circumference	6.28	km
Natural emittance	3.6	рт
Energy spread	0.11	%
Maximum ID length	4.8	m
Beta functions (x, y) at ID	6.5, 3.0	m
Number of dipoles	7	per sector
Horizontal, vertical tune	344.10, 171.16	
Natural chromaticities	-476, 274	
Energy loss	2.3	MeV/turn



Scan of Energy with 1 Set of DUs



- In this case, one long straight is filled with damping undulators
 - 17mm period, 1T SCUs
 - 14 devices, each 6.7m long
- Computation includes collective effects (IBS, PWD)
 - 0.5 nC in 8300 bunches equates to 200 mA
 - Beam is fully coupled (same emittance in both planes)
 - 10 GeV is close to the minimum

Brightness Comparison

Coherent Fraction

What's Stopping Us?

- Ring is large, expensive
 - Much smaller than LHC or LEP
 - Potentially many more users
- Very small dynamic and momentum acceptance
 - Small DA makes beam accumulation impossible
 - Small MA makes lifetime poor
 - Forces operation with full coupling
 - Makes accumulation *even more* impossible
- All ring-based light sources use beam accumulation
 - Each stored bunch/train is built up from several shots
 - Incoming beam has large emittance and residual oscillation
 - Requires DA of $\sim 10 \text{ mm}$
- Top-up assumes beam accumulation, won't help us
- Fortunately, a solution is in hand

Different Idea for Ring Operation^{1,2}

- Need to abandon accumulation in favor of "swap-out"
 - Kick out depleted bunch or bunch train
 - Simultaneously kick in fresh bunch or bunch train
- Allows operation with full coupling
 - Provide round beams (e.g., 3pm x 3pm)
 - Increase Touschek lifetime
 - Reduce intrabeam scattering (preserves emittance)
- Several possible injectors
 - Linac/Booster+Accumulator ring
 - Low-emittance booster
 - Full-energy linac

Additional Injector Considerations (TeVUSR)

- For 200 mA and 0.5 nC/bunch, need ~8300 bunches
 - 500 MHz rf, fill 80% of 10360 buckets
 - 4.1 µs available for kicker rise/fall
 - If $T_{rise} = T_{fall} = 10$ ns, need $N_T = 202$ trains of 41 bunches
 - Kicker flat-top is 82 ns long
- Droop between replacements of a given train is

 $D \approx \Delta T_{\rm inj} N_{\rm T} / \tau$

- Assuming $\tau=2$ h and D=0.1, need $\Delta T_{ini} = 3.6$ s
- Inject 41 bunches of 0.5 nC each time
 - Average power of ~60 W
 - APS injector now operates with ~40W average power
 - A photo-injector could easily provide the needed bunch trains

Radiation Issues (TeVUSR)

- We worry about radiation from two sources
 - Extracted beam
 - Losses in the ring
- Beam dump power is "negligible" ~60W for 10 GeV beam
- Touschek losses in the ring are ~6 W total
 - In APS today, have 0.1 W
 - Can presumably design collimation system to intercept these losses

Comparison of "TeVUSR" to Alternatives

- Free-Electron Lasers (FELs)
 - Pro: Unbeatable for peak and average brightness, short pulses
 - Con:
 - SASE FELs have too much shot-to-shot fluctuation in spectrum and intensity for some experiments
 - High peak power not desirable/workable for all experiments
 - Small number of users per machine compared to USR
 - Difficult to get >25 keV x-rays
 - Seeding and X-ray FEL oscillator address some of these (very narrow bandwidth and reduced fluctuations)
- Energy Recovery Linacs (ERLs)
 - Pro: Probably smaller, cheaper; similar flux; short pulses
 - Con: 10x lower brightness; significant R&D challenges; excellent performance available to relatively few users

Conclusion

- Storage ring light sources are among the most successful scientific facilities in existence
- Reports that rings had reached the end of the road were premature
 - NSLS-II and MAX-IV under construction
 - MBA lattice optimization with genetic algorithms
 - 100% coupling and swap-out injection
 - SPring-8 seems very serious about an MBA-based USR
- A Tevatron-sized USR promises
 - Diffraction limited radiation to ~50 keV
 - Brightness ~10²³
- Much work needed
 - collective instabilities
 - magnet design
 - error studies and nonlinear dynamics optimization
 - cost reduction
 - science case

Acknowledgements

 Thanks to the PEP-X team for providing their lattice and helpful comments and suggestions

- K. Bane, Y. Cai, R. Hettel, Y. Nosochkov, M.-H. Wang

 Thanks to A. Zholents for comments on earlier versions of this talk