

34-ID Canting Upgrade 23 September 2011

P. Zschack X-Ray Science Division

34ID Experimental Programs

- Each technique is brilliance limited
- Both experiments ran simultaneously (2000-2011), but shared the ID spectrum
- Limited GUP access highly oversubscribed (by 2010-2, ~7x typical with 1.4 cutoff)
- Canting provides spectral independence & effectively doubles General User access

34ID General User Demand & Oversubscription

Run Cycle	# Allocated	#BTRs	Ratio	Ave. Score	Ave. Score	
				(Awarded)	(Not Awarded)	
2005-1	4	5	1.25	2.00	2.30	
2005-2	5	9	1.80	1.90	1.98	
2005-3	4	8	2.00	1.85	1.95	
2006-1	7	10	1.43	1.83	1.94	
2006-2	6	12	2.00	1.93	2.22	
2006-3	3	14	4.67	1.57	1.76	
2007-1	4	20	5.00	1.65	1.91	
2007-2	6	19	3.17	1.58	1.93	
2007-3	6	23	3.83	1.50	1.77	
2008-1	5	27	5.40	1.40	1.77	
2008-2	3	25	8.33	1.43	1.70	
2008-3	3	30	10.00	1.37	1.76	
2009-1	6	37	6.17	1.37	1.74	
2009-2	9	37	4.11	1.37	1.78	
2009-3	7	39	5.57	1.43	1.78	
2010-1	8	39	4.88	1.39	1.76	
2010-2	6	44	7.33	1.30	1.73	
2010-3	6	40	6.67	1.27	1.77	
2011-1	10	42	4.20	1.34	1.83	
2011-2 (C+E)	10	36	3.60	1.47	1.86	
2011-3 (C+E)	15	40	2.67	1.49	1.82	
totals	133	556	4.18	1.54	1.86	

34-ID Canting Upgrade Timeline

- 2000: Sector 34 begins operations shared undulator source (Designed to permit canting at future time)
- July 13, 2009: ARRA Funds (\$3.6M) awarded for 3 FE canting proposals
- Sept 2009 Aug 2010: Design and planning
- December 2010: Vacuum chamber replaced & shortened U33 installed
- May 2011: Canted front-end installed
- June 2011: Beamline reconfiguration completed
- June 16, 2011: First light from canted beamline(s)
- July 13, 2011: Operations resume with General Users

34ID Canted Geometry

Maximum storage ring beam current	200 mA
Length of each undulator	2.07 m
Undulator period length λ	3.0 cm
Number of periods N	69
Undulator period length λ	3.3 cm
Number of periods N	62
Undulator minimum gap	10.5 mm
Corresponding deflection	2.76
parameter K at min. gap	
Horizontal beam size σ _x	352 μm
Vertical beam size σ_v	18.4 μm
Horizontal beam divergence σ_x	22 µrad
Vertical beam divergence σ_v	4.2 μrad
Total power emitted from each undulator	10.2 kw
Total power emitted from both undulators	20.4 kw
Peak power density at normal	281
incidence	kw/mrad ²

34ID Front End Configuration

20m

25m

34ID New Beamline Optical Layout

34ID-E Experiment Layout

Demag		Resolution				Flux Density	
Vertical	Horizontal	Transverse	Depth	Angular	Strain	White	Mono
496	620	300 nm	500 nm	0.01	1.0E-04	1.0E+13	1.0E+11

34ID-C Experiment Layout

34-ID White Beam Slits

CLOSED 3°

Width (µm)

Beam Line Upgrade Modifications

- 3.3 cm Undulator in upstream section 3D Laue Diffraction Microscopy
- 3.0 cm Undulator in downstream section Coherent Diffraction Imaging
- New Front-end Mask Canted Geometry
- New Front-end Collimator Canted Geometry
- New Window termination of Front-end
- New Beamline Masks
- New Beamline Collimators
- Shielding modifications
- White Beam Slit Assemblies for each Branch Line
 - W source-defining edge
- New Mirror with white-beam aperture
- Beamline realignment to +/- 0.5 mRad

Sector 34 VC & IDs:	\$222K
Sector 34 canted front end:	\$575K
Sector 34 beamline components:	\$250K
Sub-total – Sector 34:	\$1.047M

Photo Gallery

Contributing Groups

MED group:

Oliver Schmidt Greg Wiemerslage Leonard Morrison Erica Benda Russ Otto Kevin Knoerzer Dan Nocher Mike Bosek Andre McKenzie John Pace

SI Group:

Joe Budz Phil McNamara Kurt Forth Chris Sawatski Jim Lenckus

Survey Group:

Scott Wesling Scott Peterson Shane Flood Rolando Gwekoh Bill Jansma

Design & Drafting

Cliff Pitts Josh Downey

APS Shops:

Bruce Hoster Bob Connelly John Wozniak

ANL Shops:

Bill Toter Romas Senkevicius Bob Sommer

Magnetic Devices Group:

John TerHaar Matt Kasa Joe Gagliano (young Joe) Isaac Vassermann Mike Merritt Melike Abliz Mark Jaski Chuck Doose Marty Smith Reggie Gilmore

Diagnostics:

Glenn Decker Mike Hahne Pat Dombrowski

Power Supplies Group:

Tony Puttkammer Rob Vargas Stan Reinke Byron Jordan

Mom Group:

Jack Burke **Glenn Moonier** Dan Burke Michael Bracken Jerry Rice Bob Furst Michael Johnson Don Croupat Gene Swetin **Cheryl Bergthold** Cheri Giacomi Wayne Michalek Raul Mascote **Bob Wilson** Cristen Sarne **Guy Harris** Aaron Lopez Mark Martens Ed Theres **Ralph Bechtold** John Hoyt Joe Gagliano Try Leng Kruy

14

Special Acknowledgements

Expanded Opportunities for 34-ID-C

In-situ characterization

- Structural response to chemical reactions during in-situ catalysis
- Decomposition of semiconductors in contact with noble metals
- Alloying and dealloying at high temperature
- Electrochemical response of nanoporous materials
- Mechanical response to strain at nanometer length scales

Condensed matter

- Domain wall structure and transport in complex oxides
- Phase transitions vs temperature, magnetic field, pressure
- Faults, defects, and strain in nanocrystals, nanorods, and nanowires

Biomaterials

- Nanocrystalline order in cellulose, plant cell walls
- Biomineralization and ordering in collagen and bone

Newton, et.al., Nature Materials 9, 120–124 (2009)

Expanded Opportunities for 34-ID-E

Mechanical Properties

Deformation Composites Grain Growth

Semiconductor technologies

Strain localization Electromigration Whisker growth

Complex oxides – phase separation Correlated electron materials Metal-Insulator transition Ferroelectric Domains

High pressure studies, Geophysics

Nanostructured Materials Crystallography

Individual free standing Embedded – active elements

Chemistry – Corrosion, Catalysis

Ewald spheres for three input directions k₁, k₂, k₃

 $\tilde{F}(\mathbf{k})$

 $\tilde{F}(\mathbf{k})$

APS Operations Meeting – 23 September 2011

Tim D. Gerke & Rafael Piestun, Nature Photonics 4, 188 - 193 (2010)

Thanks...