

ANL-LBNL Fast CCD: Current Status and Future Developments

Alec Sandy, X-Ray Science Division

APS Monthly Operations Meeting – August 31, 2011

Acknowledgements

- APS Detector Group
 - Especially John Weizeorick and Tim Madden
- Lawrence Berkeley National Lab (LBNL)
 - Especially Peter Denes and Dionisio Doering
- APS Time-Resolved Research Group
 - Especially Suresh Narayanan
- Northern Illinois University
 - Larry Lurio, Janae DeBartolo (APS), Nuwan Karunaratne, Sambhunath Bera
- Larry Lurio, Nuwan Karunaratne, Peter Denes and John Weizeorick for slides

Outline

- Motivation
- Background
- Design
- Development and characterization
- Applications
- Future prospects
- Summary

Motivation

- Scientific need for fast high-resolution photon sensitive detectors:
 - I.e., dynamics in a dense colloid solution with temperature-sensitive inter-particle

interactions 1. Illuminate sample with a partially-coherent x-ray beam

200 nm radius silica spheres

2. Record speckle pattern versus time with an XPCS-suitable detector

3. Time autocorrelate speckle patterns to reveal sample dynamics

Background

- CCD's are tried and true pixelated x-ray detectors with many applications ... but slow
- Improved speed and efficiency will make x-ray CCD's more useful

Background

- History and technical opportunity
 - IR astronomy CCD sensors developed at LBNL should also be useful for x-ray detection
 - Envisaged applications:
 - LCLS (but not an official LCLS detector)
 - Time-resolved diffraction and energy-resolved Laue diffraction
 - CDI
 - XPCS
 - S. Ross (DET) and H. Padmore (LBNL) explore collaboration to leverage LBNL astronomy sensors for x-ray applications (2005)
 - LBNL: sensor and application-specific integrated circuit (ASIC) design expertise
 - ANL: data-acquisition electronics and opto-mechanical expertise

Design

- Based on Supernova Acceleration Probe (SNAP) sensor and readout designs
 - 494 × 480 30 μm pixels (≈ 14 × 14 mm²)
 - Thick (200–300 μm) fully-depleted back-illuminated CCD
 - Direct detection or phosphor/fiber coupling
 - Parallel readouts (96) for speed
 - Split top and bottom and one output per 10 columns
 - Readout time of 2.4 msec / frame or 416 frame readouts/sec
 - Cooled sensor for low noise

- Custom readout IC's to perform analog-to-digital conversion of input
 - 14-bit output
 - Conversion rate of 1 μsec/pixel
 - 4 serial LVDS outputs

Transparent

rear window S. Holland

Design

- APS instance 1 of version 1.0 released for testing ~ 2 years ago
 - Flat field response
 - Point-spread function (PSF)
 - Efficiency and energy resolution
 - Usability, robustness
 - Applications

APS Monthly Operations Meeting - 8/31/11

- APS instance 1 of version 1.0
 - Demonstrated big-picture suitability for XPCS
 - Higher frame rate than almost all x-ray CCD's
 - High gain response to photons via direct detection
 - High efficiency
 - Enabled development of robust control and compression algorithms
 - Operational challenges
 - Heat leaks from readout electronics limit exposure times and exposure areas
 - Sensor or electronics with significant dead or high noise regions
 - Transient noise spikes
 - Bulky and heavy

- APS instance 2 of version 1.0 deployed at 8-ID in February for testing
 - Much better!
 - Flat field

Photon counting (or energy resolution for single photon counting)

- Different color lines represent different (software) discriminator levels
- Energy resolution $\approx 300 \text{ eV}$

• X-ray speckle from a static reference sample

Fluctuating speckle from a dynamic reference sample

$$g_2(Q,\Delta t) = \frac{\left\langle I(Q,t)I(Q,t+\Delta t)\right\rangle}{\left\langle I(Q,t)\right\rangle^2}$$

- XPCS to probe the dynamics of eye-lens-protein mixtures (L. Lurio, J. DeBartolo, G. Thurston, Nuwan K.)
 - Physiological motivation
 - Cold cataract is due to reversible_liquid-liquid phase separation in young, mammalian eye lenses

- Stiffening of eye-lens—presbyopia (far-sightedness)—possibly associated with liquid-glass transition in protein mixture
- Dynamics measurements provide information on rate of phase separation, elasticity
- X-rays provide information on local nanoscale diffusion and diffusion of clusters of proteins (cf. light scattering)

- XPCS to probe the dynamics of eye-lens proteins (L. Lurio, J. DeBartolo, G. Thurston, Nuwan K.)
 - Physics motivation
 - Dynamics of concentrated sticky "spheres"
 - Technical motivation
 - Extend XPCS to biological materials in aqueous solution
 - Faster time scales
 - Higher x-ray energies
 - Detector usability and robustness
 - Experienced and local user group
 - Intermittent trials over the years as test of state-of-the-art XPCS

Alpha crystallin suspension dynamics

July 2009: • Fast CCD

November 2009:

- Fast CCD
- Focusing

- August 2011:
 - Faster dynamics than observed previously so still a work in progress
 - Confidence gained in deploying detector for GU program

Future

- Near term
 - ANL and LBNL ARRA-funded version 2.0 – Faster CCD
 - Prototype integration testing: Fall 2011
 - Production: Winter/Spring 2011/2012
 - Off-line testing: Summer 2012
 - Beamline deployment and testing: late Summer or Fall 2012

Item	1.0	2.0
Pixel size (µm ²)	30 × 30	30 × 30
Pixel thickness (µm)	250	250
Sensor size (pixels)	494 × 480	960 × 960
Bandwidth (Mpix/s)	38	160-200
Frame transfer (shutterless operation)	No	Yes
Area of interest	No	Yes
Kinetic/Streak mode	No	Yes
Weight (kg)	20	12

Future

- Near term
 - Mechanical prototype assembly at LBNL

APS Monthly Operations Meeting - 8/31/11

Future

- Further term
 - LBNL LDRD to develop a fully-column parallel CCD
 - Fastest CCD
 - $\approx 10X$ further increase in data bandwidth

Summary

- Fast CCD developed and deployed for use at APS, ALS and LCLS
 - XPCS (APS)
 - Time- (and energy) resolved diffraction (ALS, LCLS)
 - Coherent diffraction imaging (ALS)
- Faster CCD nearing integration testing and production
- Productive and fruitful collaboration established with beamline staff, APS Detector Group and LBNL
 - Flexibility is one key benefit
 - Packaging, thresholding, timing, ...

Further information:

- P. Denes et al., Rev. Sci Instrum. 80, 083302 (2009)
- D. Doering et al., Rev. Sci. Instrum. 82, 073303 (2011)
- T. Madden et al., Rev. Sci. Instrum. 82, 075109 (2011)

XPCS Detector Landscape

ltem	PI LCX	FCC D 1.0	FCCD 2.0	FCCD 3.0	Maxipix	pnSenso r CCD	Eiger	VIPIC
Pixel size (µm)	20	30	30	30	55	48	75	80
Thickness (µm)	~65	250	250	250	200	450		
Area (Mpix)	1.7	0.25	1	1	0.06	0.06	0.06*	0.005 *
Bandwidth (Mpix/s)	2	38	160- 200	1700	60	70	720*	400*
Frame transfer?	Ν	Ν	Y	Y	Ν	Y		
AOI?	Y	Ν	Y	Y				
Streak-mode?	Y	Ν	Y					
Counting?	Ν	Ν	Ν	Ν	Y	Y	Y	Y

- Pilatus: 172 μm pixels, 135 Hz (1M), 320 μm thick pixels, counting

- SMD/Dalsa: 14 μm pixels, 60 Hz (1M), 40 μm thick pixels, integrating, legacy device

* Specifications for (prototype) module. Parallel modules expected for production version.

APS Monthly Operations Meeting - 8/31/11