

AMO Adventures at the LCLS

The Argonne Atomic, Molecular, and Optical Physics Group's experiments utilizing the Linac Coherent Light Source (LCLS) – the first X-ray Free-Electron Laser

Bertold Krässig

Chemical Sciences and Engineering Division (soon: X-Ray Science Division) Argonne National Laboratory

APS/Users Monthly Operations Meeting, December 16th, 2009

Thanks to 33 Undulators from the APS

X-Ray Flux: Per Pulse versus Per Second

LCLS: 2×10¹² photons per pulse at 9 keV;

2×10¹³ photons per pulse at 750 eV;

≈ 70-300 femtoseconds pulse length

(≈1-3 femtoseconds, if the bunch charge is lowered from 250pC to 20pC) currently 30 Hz repetition rate, 120 Hz maximum:

\leq 2.4 × 10¹⁵ photons per second

For comparison, APS 14-ID (2 undulators):

10¹⁰ photons per pulse at 12 keV;

≈ 100 picoseconds pulse length;6.5 MHz, mechanically limited to ≤ 1 kHz:

 \leq 6.5 × 10¹⁶ photons per second

High Intensity X-rays

- 2 × 10¹³ photons
- 750 eV photon energy
- 200 fs pulse length
- 1 μm² focal diameter
- → 1.2 × 10¹⁸ W/cm²
- Pulses are spiky -> peak intensities are higher than the average
- Individual atoms absorb multiple photons during a single pulse

"Unlocking the World of the Ultra Small and the Ultra Fast"

AMO questions

- fundamental nature of x-ray damage at high intensity
 - electronic damage
 - Coulomb explosion timescale
 - behavior at >10¹⁸ W/cm² 15Å
- nonlinear x-ray processes
- role of coherence
- quantum control of inner-shell processes

The LCLS Poster Child

The First Endstation: AMO Physics

The Components of the High Field Chamber

The First User Experiment, October 1–5, 2009 Tracking transient atomic states produced by ultraintense x-ray pulses

The Team

Yuelin Li, Elliot Kanter, Bertold Krässig, Anne Marie March, Steve Pratt, Robin Santra, Steve Southworth, Linda Young *Argonne*John Bozek, Christoph Bostedt, Mark Messerschmidt *LCLS*Lou DiMauro, Gilles Doumy, Chris Roedig *Ohio State University*Nora Berrah, Li Fang, Matthias Höner *Western Michigan University*Phil Bucksbaum, James Cryan, Mike Glownia, David Reis

Pulse Center, Stanford

K-Shell Ionization (870 eV and above) Auger Decay

- K-hole state lifetime τ = 2.4 fs
- Predominantly Auger decay (98.2%)
- K-shell hole is filled by a valence electron and a second valence electron is emitted (Auger electron)
- Auger electron energy is the binding energy difference between the inner and valence shells
- Double K-holes (hollow atom) give rise to hypersatellite transitions
- Double-K/Single-K = 0.32(4) % (for 5 keV x-rays, single-photon absorption, 12-ID)

Southworth et al., Phys. Rev A 67 (2003)

Theory: Nina Rohringer and Robin Santra Phys. Rev. A 76, 033416 (2007)

- P: K-shell photoionization
- A: Auger electron emission
- V: Valence ionization
- Sequential ionization PAVVVV ...

10¹³ x-rays 230 fs 1 μm spot

The "First Glimpse at the Experimental Data" will be posted after publication of this work

Thank you for your understanding.

The Fifth Experiment at LCLS, Oct 30– Nov 3, 2009 Resonant nonlinear x-ray processes at high xray intensity

The Same Team

Yuelin Li, Elliot Kanter, Bertold Krässig, Anne Marie March, Steve Pratt, Robin Santra, Steve Southworth, Linda Young

Argonne

John Bozek, Christoph Bostedt

LCLS

Lou DiMauro, Gilles Doumy, Chris Roedig

Ohio State University

Nora Berrah, Li Fang, Matthias Höner

Western Michigan University

Phil Bucksbaum, James Cryan, Mike Glownia, David Reis

Pulse Center, Stanford

Schematic of the Two-photon 1s-2p Resonance Excitation

- a) Valence ionization by first absorbed x-ray photon (or IR laser)
- b) 1s-2p excitation at 848.6 eV by second absorbed photon; resonant absorption/stimulated emission cycling at high intensity (Rabi Flopping)
- c) Auger decay

Theory: Nina Rohringer and Robin Santra, Phys. Rev. A 77, 053404 (2008)

Summary and Outlook

- The LCLS is up and running.
- The Argonne AMO group had two successful experiments at the LCLS in October 2009.
- The data show the signatures of
 - sequential multiphoton absorption,
 - double K-hole (hollow neon) production,
 - intensity-induced transparency/saturable absorption,
 - 1s-2p resonant absorption.
- Data analysis is ongoing.
- Our next run: August 1-5, 2010.

Femtosecond x-ray two-photon photoelectron spectroscopy of organic molecules

Heroes at the Main Control Center

