

... for a brighter future

An X-Ray FEL Oscillators (for Record-High Spectral Purity & Brightness)

Kwang-Je Kim

APS Users Monthly Operations Meeting

October 28, 2009

UChicago
Argonne

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Era of Hard X-Ray ($\lambda \triangleq 1 Å$) FEL has Arrived

LCLS: Single-pass, high-gain FEL amplifying initial noise → Excellent transverse coherence but temporal coherence is marginal

LCLS demonstrates FEL principles work @ Å-scale. It is now time to develop optimized FEL schemes for Future Light Sources

SASE
Seeded harmoniuc amplifier
– Soft X-rays
Oscillator

(Hard) X-Ray FEL Oscillator

- An X-ray pulse is stored in a diamond cavity → multipass gain & spectral cleaning
- Provide transform limited BW→1 \$\overlimits10^7 5\$ 10^-7 for σ_t=1-0.1ps @ λ ~1 Å
- Zig-zag path cavity allows wavelength tuning
- Originally proposed in 1984 by Collela and Luccio and resurrected in 2008 (K-J. Kim, S. Reiche, Y. Shvyd'ko, PRL 100, 244802 (2008)

Tunable X-ray Cavity

- Two crystal scheme has a very limited tuning since θ must be kept small
- A four crystal scheme is tunable
- Any interesting spectral region can be covered by one chosen crystal material
- Simplify the crystal choice
 Diamond as highest reflectivity
 & best mechanical and thermal properties

R. M.J.Cotterill, APL, 403,133 (1968) K-J. Kim & Y. Shvyd'ko, PRSTAB (2009)

Brightness of Hard X-Ray Sources

KJK, APS Users Monthly Operations Meeting, October 28, 2009

Major Parameters

- Electron beam:
 - − Energy ♦ 7 GeV
 - Normalized rms emittance < 0.2 (0.3) mm-mr, energy spread (rms) < 2910⁻⁴
 - Bunch charge ~ 25-50 pC \rightarrow low intensity
 - Bunch length (rms) $\stackrel{\circ}{\rightarrow}$ 1 (0.1 ps) → Peak current 20 (100) A
 - A constant bunch rep rate @ ~1 MHz
- Undulator:
 - Lu= 60 (30) m, $\lambda_u \sim 2.0$ cm, K=1.0 1.5
- Optical cavity:
 - 2- or 4- diamond crystals and focusing mirrors
 - Round trip reflectivity should be > 85 (50) %
- XFELO output:
 - − 5 keV ≏ 🗞 ພ ≏ 25 keV
 - Bandwidth: $\Delta\omega/\omega \sim 1$ (5) $\otimes 10^{-7}$, pulse length (rms) = 500 (80) fs
 - # photons/pulse ~ 1\$109

Blue color in the above indicates short-pulse mode for relaxed tolerances

XFELO Will Revolutionize the Techniques Developed at 3rd Gen Light Sources and Find New Applications in Areas Complementary to SASE

- High resolution spectroscopy
 - Inelastic x-ray scattering
- Moessbauer spectroscopy
 - 10³/pulse, 10⁹/sec Moessbauer γ s (14.4 keV, 5 neV BW)
- X-ray photoemission spectroscopy
 - Bulk-sensitive Fermi surface study with HX-TR-AR PES
- X-ray imaging with near atomic resolution (~1 nm)
 - Smaller focal spot with the absence of chromatic aberration

Technology R&D for XFELO

Injector

- Low-intensity, ultralow emittance, CW Injector

X-ray optics

- High quality diamond crystals in a small volume (1-2) mm² (40-100) μ m
- Highly reflectivity and low phase distortion of grazing incidence focusing mirror
- Stability

Advances in these R&Ds will benefit general accelerator and synchrotron radiation comunity

Injector for XFELO: A Novel Approach

- Current paradigm of injector design: laser driven rf photocathode
- For low intensity & ultra-low emittance → thermionic cathode inside VHF band cavity (~ 100 MHz)
- Inspired by the SCSS/Spring-8 success of pulsed DC gun (T. Shintake, K. Togawa,..)

Injector R&D

Small diameter CeB6 thermionic cathode

- 0.5 mm (3 mm for RIKEN/SPring-8)

100 MHz, 1 MV RF cavity

- Peak accelerating field=20 MV/m is slightly below 1.89Kilpatrick limit (1.76)
- Similar to LBNL 187 MHz cavity but with thermionic cathode and without vacuum holes
- Laser-induced cathode-heating may obviate the deflecting cavity/slits and back bombardment problem

RIKEN/Spring-8 cathode

Reflectivity and Spectral Width Measurement at APS Sector 30 in good agreement with Theory March, 2009

Heat Load Problem?

- As an intracavity x-ray pulse hit a crystal, r-dependent temperature rise δT → crystal expansion → $\delta E/E = \beta \delta T (\delta L/L = \beta \delta T/T) \rightarrow \delta E/E <<10^{-7}$?
- Due to high thermal-diffusivity, Inter-pulse effect can be made small if T< 100K (high heat diffusivity)
- Intra-pulse effect δE/E <<10⁻⁷ if the expansion time scale << pulse duration (~ps). Otherwise δE/E ~5-10 10⁻⁷

Grazing Incidence, Curved Mirror

JTEC

- Developing a technique combining elastic emission machining (EEM, slow) and electrolytic in-process dressing (ELID, fast) to fabricate an "arbitrary" surface, such as ellipsoidal, to <nm height error and 0.25 mrad figure error
- Such mirrors are sought after by "every body" in SR business

Other ways of focusing

Curved crystal surface, CRL,...

Null-Detection FB at APS Sector 30

(S. Stoupin, F. Lenkszus, R. Laird, Y. Shvyd'ko, S. Whitcomb,..)

The stability of IC3 signal indicates the angular stabilization of the 3rd crystal pair within 50 nrad is achieved (~1 Hz BW)

Prototype X-Ray Cavity at an APS Beamline

- About 1/5 model of an XFELO cavity
- Adjust the distance M₁-M₂ to control the stability
- Adjust the round trip path length to match/mismatch the spacing (46m) between the APS x-ray pulses
- Test overall reflectivity, crystal and mirror stabilization, transverse mode profile

XFELO Study Group

Modeling/Simulation

- R. Lindberg, W. Fawley, S. Reiche

Injector

- A. Nassiri, N. Sereno, M. Borland, G. Waldschmidt, D. Capatina,
 - P. Ostroumov, B. Mustapha, P. Piot, S. Kondrashev, ...

X-ray Optics:

- Y. Shvyd'ko, S. Stoupin, D. Shu, A. Macrander, L. Assoufid, G. Park,..

Institutions interested in collaboration

- RIKEN/Spring-8: Injector, X-ray optics
- DESY: XFELO test at European XFEL?
- LBNL: 100 MHz cavity
- KEK: XFELO at ERL
- Inst. for Geology and Mineralogy (Novosibiersk) and Tech. Inst. for Superhard & Novel Carbon Materials, Moscow: Diamond

