Six mrads and Two Endstations: Squeezing it all in at the GSECARS (13BM) Bending Magnet Beamlines

Peter J. Eng CARS University of Chicago

APS BM Source

- 6 mrad of beam
- Excellent source of high-energy x-rays Ec =20 keV
- Small Source 65 x 275 um FWHM allows focusing to small spot sizes

Only comparable high-energy x-ray source in US is X-17 NSLS

Great Source for:

- High-pressure studies (DAC and LVP)
- Microcrystal Diffraction
- Microtomography / Radiography (Mono and Pink)
- Spectroscopy (EXAFS)
- XRF Microprobe
- Surface and Interface Scattering

Two Independent Experiment Stations (can operate 100% of the time):

- 13-BM-C (side station)
 - Accepts up to1.5 mrad
 - Energy Range 7.5 30 keV (not scannable and monochromatic only)
- 13-BM-D (end station)
 - Accepts up to 2.5 mrad
 - Energy Range 5.6 70 keV (scannable, white and pink)

GSECARS Sector 13

Figure 4-1. GSECARS sector 13 present single undulator layout (A) and proposed canted undulator mode (B).

13BM

13BMC

c)

Energy [keV]	Vertical Mirror Intercepts	Side Deflecting Mono.	Beam Size H x V [FWHM μm]	Beam Divergence H x V [FWHM mrad]	Total Flux [photons / sec]	Techniques Supported			
10	58%	Si (111) $\delta = 9.5^{\circ}$ $2\theta = 22.8^{\circ}$	23 x 28	15 x 0.55	1 x 10 ¹²	Surface and Interfaces; Microcrystallography			
18	61%	Si (111) $\delta = 5.2^{\circ}$ $2\theta = 12.6^{\circ}$	26 x 28	10 x 0.53	8 x 10 ¹¹	Surface and Interfaces; Microcrystallography; DAC			
30	51%	Si (220) $\delta = 5.1^{\circ}$ $2\theta = 12.4^{\circ}$	26 x 28	10 x 0.32	5 x 10 ¹¹	Microcrystallography; DAC			

Pixel Array Detector: " Pilatus 100K"

Pixel size 172 x 172 µm^2 83.8 x 33.5 x mm2 Active area Counting rate >2x10^6/pixel/s Energy range 3 – 30 keV (abs. 100% - 10%) Readout time 2.7 ms Framing rate 200 Hz Power consumption 15 W, air-cooled Dimensions 275 x 146 x 85 mm Weight 4 kg

http://www.dectris.com/sites/pilatus100k.html

Pixel Array Detector and High Speed Trajectory Scanning

SPEC scan for both STEP and TRAJECTORY SCANNING mode with the Newport XPS motor controller and Pilatus detector.

Pixel Array Detector: EPICS Support – 32 ROIs

× pilatus8ROIs.adl														
Pilatus GSE-PILATUS1: ROIS 1-8														
	Counts													
ROI	Label	XMin	XMax	YMin	YMax	BgdWidt	h Total	Net	Min	Max	Plots			
1	Peak	262	305	B 5	101	1	3283551	3281675	0	139213	Ð			
2	Total	0	486	þ	194	1	3308901	3300477	0	139213	Đ			
3		-1	-1	-1	-1	1	0	0	0	0	<u>면</u>			
4		-1	-1	-1	-1	1	0	0	0	0	B			
5	[.	-1	-1	-1	-1	1	0	0	0	0	D			
6		-1	-1	-1	-1	1	0	0	0	0	B			
7		-1	-1	-1	-1	1	0	0	0	0	D			
8	[-1	-1	-1	-1	1	0	0	0	0	Ð			

(11L) rod profile for goethite(100)

Structure of goethite(100)/water interface

Powder Diffraction - Real Time Reaction Studies: Fisher et al.

X-ray Fluorescence Computed Tomography Using Emission Tomography Systems

- L. J. Meng¹, P. J. La Riviere² and G. Fu¹, Peter Eng³ and Matt Newville³
- 1. Department of Nuclear Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign
- 2. Department of Radiology, University of Chicago
- 3. Consortium for Advanced Radiation Sources, University of Chicago

(a) Experimental Setup at Argonne APS beam line.

(b) Schematic of the experimental setup.

(c) The direct conversion X-ray CCD detector (right) and the collimation apertures used in this study (left). The aperture has 121 pinholes of 100 μ m diameter.

Fig. 5. Energy spectrum measured with the X-ray CCD detector. The energy threshold used for selecting fluorescence components are shown in the figure.

Fig. 7. 3-D rendering of the reconstructed elemental distribution with data acquired in Mode 2 geometry.

Fig. 6. Experimentally acquired projections with fluorescence and Compton scattered X-rays. The aperture used has 35 pinholes of 300 μm diameter. The projection data was acquired by stepping a thin X-ray beam of 50 μm thickness through the object. Data acquisition time was 5 minutes per slice.

13-BM-D

- Source:
 - Accepts up to 2.5 mrad
 - Energy Range 5.6 70 keV (scannable, white and pink)
 - Focused to ~ 10 microns
 - Wide Beam 50 x 9 mm
- Experiments:
 - 1. High-pressure studies (DAC and LVP)
 - 2. Microcrystal Diffraction
 - 3. Microtomography / Radiography (Mono and Pink)
 - 4. Spectroscopy (EXAFS)
 - 5. XRF Microprobe

13-BM-D DAC

The full spectroscopic characterization of a sample is possible in-situ at extreme high pressure/temperature conditions with powerful combination of x-ray diffraction, Brillouin, Raman and fluorescence spectroscopy applied to a single point on the sample in a diamond anvil cell

S. V. Sinogeikin, J. D. Bass, V.B. Prakapenka, Rev. Sci. Instrum. 77, 103905 2006

XRD and BS of single crystal MgO in [100] direction in the DAC at 4 GPa

S. V. Sinogeikin, J. D. Bass, V.B. Prakapenka, Rev. Sci. Instrum. 77, 103905 2006

Monitor the thermal decomposition of lizardite (a Serpentine mineral) up to 1000 K. MARYLAND Mark Frank

Potential reaction at 550-600°C. $Mg_6Si_4O_{10}(OH)_8 \rightarrow 3 Mg_2SiO_4 + 4 H_2O + SiO_2$ LizarditeForsteriteamorphous

Angle Dispersive X-ray diffraction pattern taken of reaction products (700°C) with online imaging system (MAR345)

13-BM-D LVP

Rheology at high P-T

High pressure tomography

High-P tomography Goal: Measure volumes of melts at high pressure

High-P microtomography: 3D imaging of texture at P, T and strains

Viscosity of Melts Under High P-T

σ=ηέ

Terminal velocity: $v_t = (2 \Delta \rho r^2 g) / (9 \eta)$ $\Delta \rho = \rho_{\text{sphere}} - \rho_{\text{melt}}$ r = sphere radius.

Pure Fe at 2050 K (Rutter et al., PRB'02)

Diopside, 5 GPa, 2100 K

Absorption Tomography Setup 13-BM-D station at APS

13-BM-D

- X-ray Source
 - Parallel monochromatic x-rays, 8-65 keV
 - APS bending magnet source, 20 keV critical energy
 - 1-50mm field of view in horizontal, up to 6 mm in vertical
- Imaging System
 - YAG single crystal scintillator
 - 5X to 20X microscope objectives, or zoom/macro lens
 - 1Kx1Kpixel CCD camera
- Data collection
 - Rotate sample 180 degrees, acquire images every 0.25 degrees
 - Data collection time: 10 minutes
 - Reconstruction time: 5 minutes

Differential Absorption Tomography

Clint Willson (Louisiana State University)

8mm diameter sand column with aqueous phase containing Cs and organic phase containing I.

32.5 keV, below I and Cs K absorption edges

absorption edges

36.0 keV, above I and Cs K absorption edges

33.2 - 32.5 keV, showing distribution of I in the organic phase

36.0 - 33.2, showing distribution of Cs in the aqueous phase

High-Speed Radiography of Granular Particle Jets

John Royer, University of Chicago Physics Dept.

Sphere falling into a granular particle (e.g. sand) bed produces a jet

These images are above the surface, done with visible light

1 atmosphere

Reduced pressure

Want to understand what is happening below the surface

Used "pink" x-ray beam, high speed radiography

100 μsec exposure time, 5000 frames/sec

January					February					March							April						
Date	ESAF	Tech	00:00 - 08:00	08:00 - 16:00	16:00 - 24:00	Date	ESAF	Tech	00:00 - 08:00	08:00 - 16:00	16:00 - 24:00	Date	ESAF	Tech	00:00 - 08:00	08:00 - 16:00	16:00 - 24:00	Date	ESAF	Tech	00:00 - 08:00	08:00 - 16:00	16:00 - 24:00
1						1	з		A. Goncharov GUP 10524	I. Kantor GUP 11274	I. Kantor GUP 11274	1	17		Pokroy GUP 11217	Smucker GUP 9452	Smucker GUP 9452	1	28			Behrends GU P 9160	Behrends GUP 9160
2						2			l. Kantor GUP 11274	I. Kantor GUP 11274	I. Kantor GUP 11274	2			Smucker GUP 9452	Smucker GUP 9452	Smucker GUP 9452	2			Behrends GUP 9160	Behrends GUP 9160	Behrends GUP 9160
з						з			I. Kantor GUP 11274			з			Smucker GUP 9452			3			Behrends GUP 9160	Behrends GUP 9160	Behrends GUP 9160
4						4				I. Kantor GUP 11274	I. Kantor GUP 11274	4	18	LVP		LVP HPXTM Setup	LVP HPXTM Setup	4	29		Behrends GUP 9160	Beak GUP 11314	Beak GUP 11314
5						5	4		I. Kantor GUP 11274	Marquardt GUP 1173	Marquardt GUP 1173	5	19		LVP HPXTM Setup	Watson GUP 11198	Watson GUP 11198	5			Beak GUP 11314	Beak GUP 11314	Beak GUP 11314
6						6			Marquardt GUP 1173	Marquardt GUP 1173	Marquardt GUP 1173	6			Watson GUP 11198	Watson GUP 11198	Watson GUP 11198	6			Beak GUP 11314	Beak GUP 11314	Beak GUP 11314
7						7			Marquardt GUP 1173	Marquardt GUP 1173	Marquardt GUP 1173	7			Watson GUP 11198	Watson GUP 11198	Watson GUP 11198	7			Beak GUP 11314		
8						8	5		Marquardt GUP 1173	Tait GUP 11472	Tait GUP 11472	8	20		Watson GUP 11198	Lesher GUP 11320	Lesher GUP 11320	8	30			Hettiarachchi GUP 11342	Hettiarachchi GUP 11342
9						9			Tait GUP 11472			9			Lesher GUP 11320	Lesher GUP 11320	Lesher GUP 11320	9			Hettiarachchi GUP 11342	Hettiarachchi GUP 11342	Hettiarachchi GUP 11342
10						10						10			Lesher GUP 11320			10			Hettiarachchi GUP 11342	Hettiarachchi GUP 11342	Hettiarachchi GUP 11342
11						11				Tait GUP 11472	Tait GUP 11472	11				Lesher GUP 11320	Lesher GUP 11320	11	31		Hettiarachchi GUP 11342	Dargaud GUP 11270	Dargaud GUP 11270
12						12	6		Tait GUP 11472	Horita GUP 11083	Horita GUP 11083	12			Lesher GUP 11320	Lesher GUP 11320	Lesher GUP 11320	12			Dargaud GUP 11270	Dargaud GUP 11270	Dargaud GUP 11270
13						13			Horita GUP 11083	Horita GUP 11083	Horita GUP 11083	13	21		Lesher GUP 11320	LVP DDIA Setup	LVP DDIA Setup	13			Dargaud GUP 11270	Dargaud GUP 11270	Dargaud GUP 11270
14						14	7	смт	Horita GUP 11083	CMT Setup	CMT Setup	14	22		LVP DDIA Setup	Hilairet GUP 11166	Hilairet GUP 11166	14			Dargaud GUP 11270		
15						15	8		CMT Setup	Costanza- Robinson GUR 10019	Costanza- Robinson GUR 10019	15			Hilairet GUP 11166	Hilairet GUP 11166	Hitairet GUP 11166	15	32			Thayarii GUP 10449	Thayarii GUP 10449
16						16	9		Costanza- Robinson GUP 10019	Tick GUP 11385	Tick GUP 11385	16			Hilairet GUP 11166	Hilairet GUP 11166	Hilairet GUP 11166	16			Thayaril GUP 10449	Thayaril GUP 10449	Thayaril GUP 10449
17						17			Tick GUP 11385			17			Hilairet GUP 11166			17			Thayaril GUP 10449	Thayaril GUP 10449	Thayaril GUP 10449
18						18	10			Brusseau GUP 11132	Brusseau GUP 11132	18	23			LVP DDIA Setup	LVP D DIA Setup	18	33		Thayaril GUP 10449	Gerson GUP 9082	Gerson GUP 9082
19						19			Brusseau GUP 11132	Brusseau GUP 11132	Brusseau GUP 11132	19			LVP DDIA Setup	LVP DDIA Setup	LVP D DIA Setup	19			Gerson GUP 9082	Gerson GUP 9082	Gerson GUP 9082
20						20	11		Brusseau GUP 11132	Friedrich GUP 10968	Friedrich GUP 10968	20	24		LVP DDIA Setup	Y. Wang GUP 11160	Y. Wang GUP 11160	20	34		Gerson GUP 9082	Schijf GUP 8463	Schijf GUP 8463
21						21	12		Friedrich GUP 10968	Claiborne GUP 11396	Claiborne GUP 11396	21			Y. Wang GUP 11160	Y. Wang GUP 11160	Y. Wang GUP 11160	21			Schijf GUP 8463	Schijf GUP 8463	Schijf GUP 8463
22						22	13		Claiborne GUP 11396	Pamukcu GUP 11351	Pamukou GUP 11351	22			Y. Wang GUP 11160	Y. Wang GUP 11160	Y. Wang GUP 11160	22			Schijf GUP 8463		
23						23			Pamukou GUP 11351			23			Y. Wang GUP 11160			23					
24						24						24						24					
25						25	14			Kramer GUP 11148	Kramer GUP 11148	25	25	XAFS		XAFS Setup	XAFS Setup	25					
26						26			Kramer GUP 11148	Kramer GUP 11148	Kramer GUP 11148	26	26		XAFS Setup	Lindsay GUP 10199	Lindsay GUP 10139	26					
27						27	15		Kramer GUP 11148	Roeder GUP 10463	Roeder GUP 10463	27			Lindsay GUP 10199	Lindsay GUP 10199	Lindsay GUP 10139	27					
28	1	DAC		DAC Setup	DAC Setup	28	16		Roeder GUP 10463	Pokroy GUP 11217	Pokroy GUP 11217	28	27		Lindsay GUP 10199	Gibson GUP 10444	Gibson GUP 10444	28					
29	2		DAC Setup	A. Goncharov GUP 10524	A. Goncharov GUP 10524							29			Gibson GUP 10444	Gibson GUP 10444	Gibson GUP 10444	29					
30			A. Goncharov GUP 10524	A. Goncharov GUP 10524	A. Goncharov GUP 10524							30			Gibson GUP 10444	Gibson GUP 10444	Gibson GUP 10444	30					
31			A. Goncharov GUP 10524	A. Goncharov GUP 10524	A. Goncharov GUP 10524							31			Gibson GUP 10444								

GSECARS Past and Present

Yongseong Choi Przemyslaw Dera Peter Eng Sanjit Ghose Nadege Hilairet Anastasia Kantor Innokenty Kantor Atsushi Kubo Ellen LaRue Barbara Lavina Nancy Lazarz Matt Newville Joe Pluth Vitali Prakapenka **Clayton Pullins** Mark Rivers Takeshi Sanehira Fred Sopron Steve Sutton **Tom Trainor** Yanbin Wang

Visit: www.cars.uchicago.edu