

... for a brighter future

Design and Construction of the LCLS Undulator System by APS

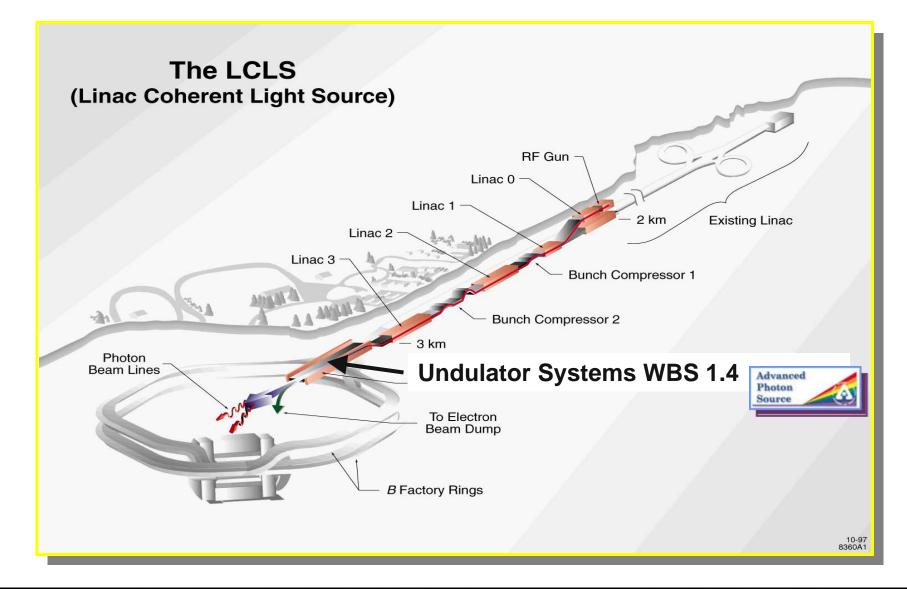
E.Gluskin

On behalf of the APS-LCLS team

August 27, 2008

UChicago ► Argonne_{uc}

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC


A bit of a history

APS joined LCLS collaboration in 1998

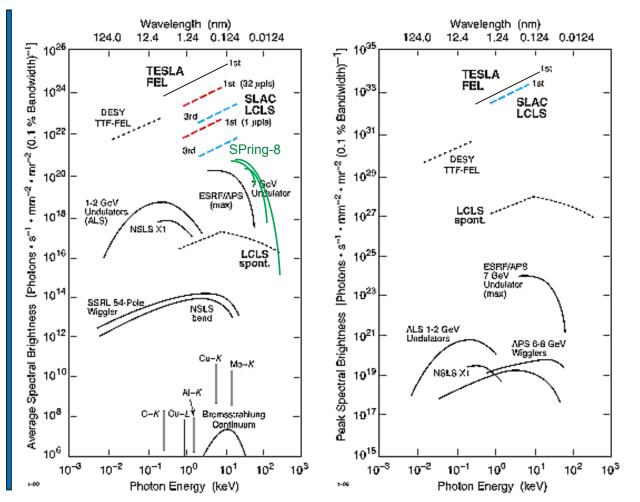
- APS expertise in developments and construction of undulators
- APS became part of the LCLS construction project in 2003
 - Technical success of the LEUTL
 - Responsibility for undulators, mechanical and vacuum systems, electron diagnostics, control systems

LCLS Layout

Capabilities/Technical Specifications

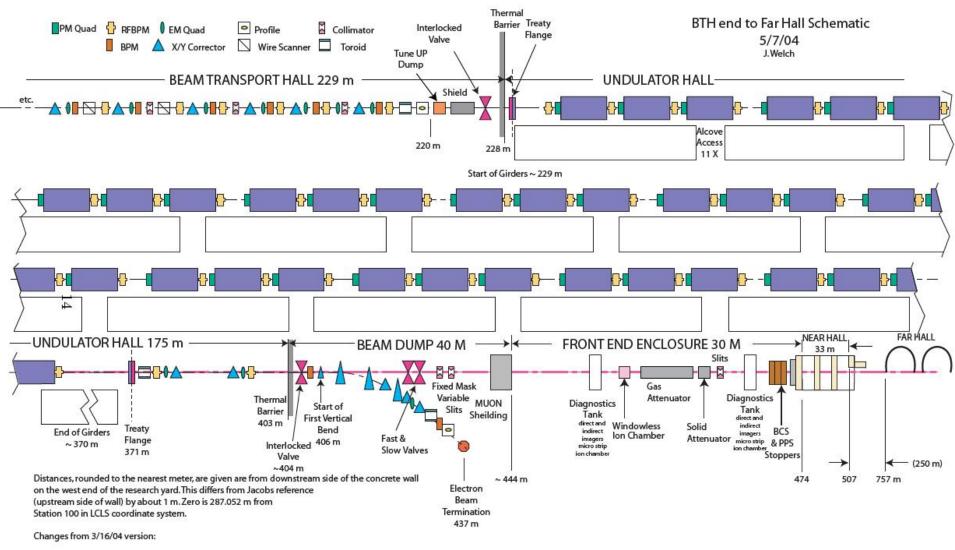
Spectral coverage: 0.15 nm 1.5 nm to 0.5 nm in 3rd
 harmonic

Peak brightness: 10³³
 [photons/(s-mm²-mr²)]/ (0.1% bandwidth)


Photons/pulse: 10¹²

 Average brightness: 3 x 10²² [photons/(s-mm²-mr²)]/ (0.1% bandwidth)

Pulse duration: <230 fs</p>


Pulse repetition rate: 120 Hz

 Upgrade – more bunches/pulse

Undulator Beam Line (between treaty flanges)

Treaty flange locations are shown. Toroid moved to other side of treaty flange.

Dump line and Muon shielding moved 8 m upstream.

List of the Undulator Line Systems

- 1.4.2 Controls and Data Acquisition
 - Micron level positioning system
 - Thermometry
 - Protection systems
- 1.4.3 Undulator Magnets
 - Magnets
 - Poles
 - Strong-backs
 - Ancillaries Mu shields, feet, translation stages, etc.
 - Mechanical supports, girders, and cam mover system
 - Multipole magnets quadrupoles and correctors

1.4.4 Vacuum Systems

- Undulator vacuum chamber
- Chamber support and leveling system
- Ancillaries bellows, pumps, short and long break chambers
- 1.4.5 Diagnostics
 - Beam position monitors
 - Beam finder wire
 - X-ray detection beam loss monitors and dosimetery

Undulator Production

- Undulator (40)
 - Magnets
 - Poles
 - Strong-backs
 - Ancillaries Mu shields, feet, tuning shims, etc.
- Support and motion system (36)
 - Mechanical supports, girders, translation stages, and cam mover system
- Multipole magnets (40)
 - Quadrupoles and correctors

Undulator - Magnets

40 planar-hybrid, fixed-gap undulators were designed by the Argonne team for industrial mass production

Magnetic design

NdFeB magnets

- Vanadium permendur poles
- 30 mm period

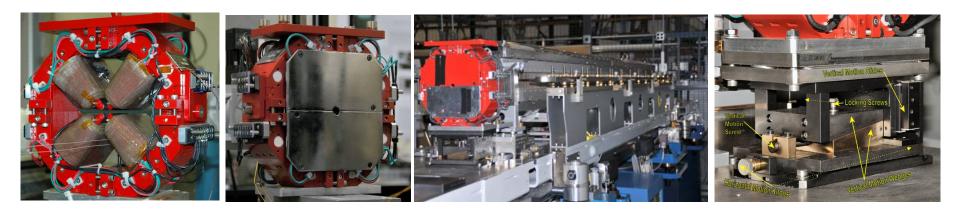
•K=3.71 so B_{eff}=1.325 T

 High-quality undulator magnetic field

 Magnetic tuning for phase errors and trajectory straightness

 Fixed gap with some tunability utilizing built in cant via undulator X-translation

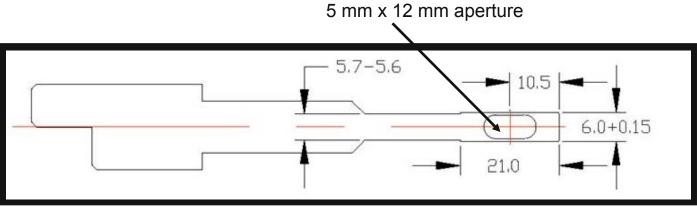
Phasing undulator ends



Component	Material	Quantity per undulator
Poles	VACOFLUX 50 Vanadium permendur	450
Magnets	N39UH (Nd-Fe-B type magnet)	450

Undulator – Quadrupole Magnets with Correctors

Each undulator girder has a	Quadrupole Parameter	Value	Unit
quadrupole with correctors	Nominal integrated quad gradient	3.00±0.03	Т
• •	Maximum integrated quad gradient	4.0	Т
designed for mechanical stability	Trim strength range	±3×10 ⁻⁴	Tm
air-cooled	Trim stability	±3×10 ⁻⁷	Tm
Iow power dissipation	Trim settability	±1.5×10⁻ ⁶	Tm
	Center stability after fiducialization	±10	μm
 40-lb quadrupole 	Center stability during ±20% grad. chng	±3	μm
supported by a stable, compact, rigid,	Center stability - short term (1h)	±1	μm
stage that provides vertical and	Center stability - long term (24h)	±3	μm
transverse adjustment of the magnet	Gradient stability - long term (24h) rms	0.25	%
,	Roll tolerance	±20	mrad
with a travel range of ±3 mm in both	Pitch tolerance	±15	mrad
directions and a precision of 2 μ m	Yaw tolerance	±15	mrad


Vacuum Systems


- Vacuum chamber
 - 40 vacuum chambers produced; 33 required for beamline
 - 3.4 m aluminum extrusion; 5 mm x 12 mm aperture; 0.5 mm wall thickness
 - Internally polished; alumina sludge abrasive flow polishing (400 psi at $\sim 30^{\circ}$ C)
- Chamber support and leveling system
- Ancillaries bellows, pumps, short and long break chambers

Vacuum Chamber

Chamber in production

Machined cross section

Argonne

Controls and Data Acquisition – Cam Shaft Movers

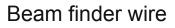
Specifications and results:

- Precision and repeatability of cam-shaft system in both directions (vertically and transverse), measured on undulator ends, for pitch and yaw motion as well
 - The specification is $\pm 7\mu$
 - We achieved $\pm 2\mu$ with a feedback and motion resolution of 0.13 μ
- Precision and repeatability of transverse travel (80 mm) on linear stages
 - We achieved $\pm 5\mu$
- Precision of a K-value adjustment using transverse linear stages
 - We achieved $\pm 5\mu$
- Short term stability (10 hours) of the girder and undulator
 - The specification is ± 5µ
 - We achieved $\pm 3\mu$

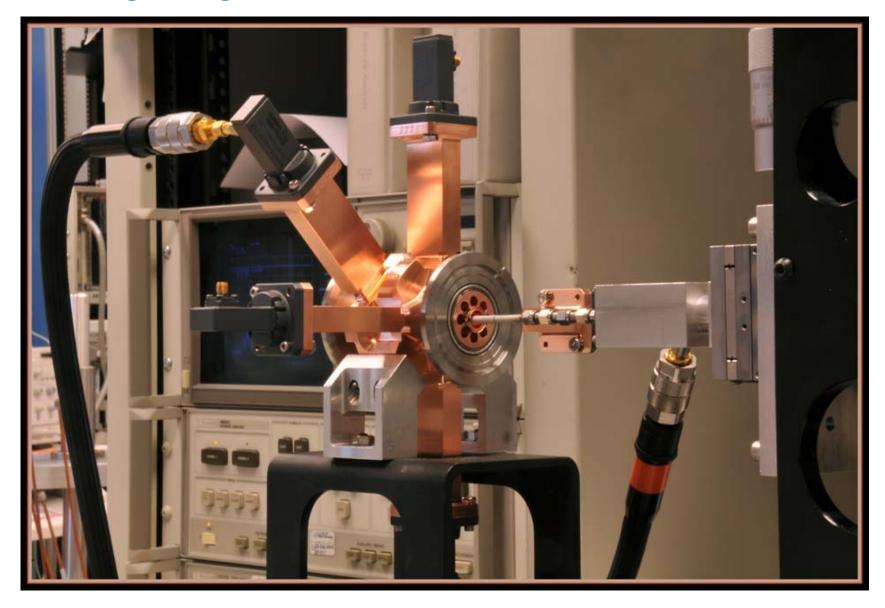
Controls and Data Acquisition

Undulator in-tunnel rack

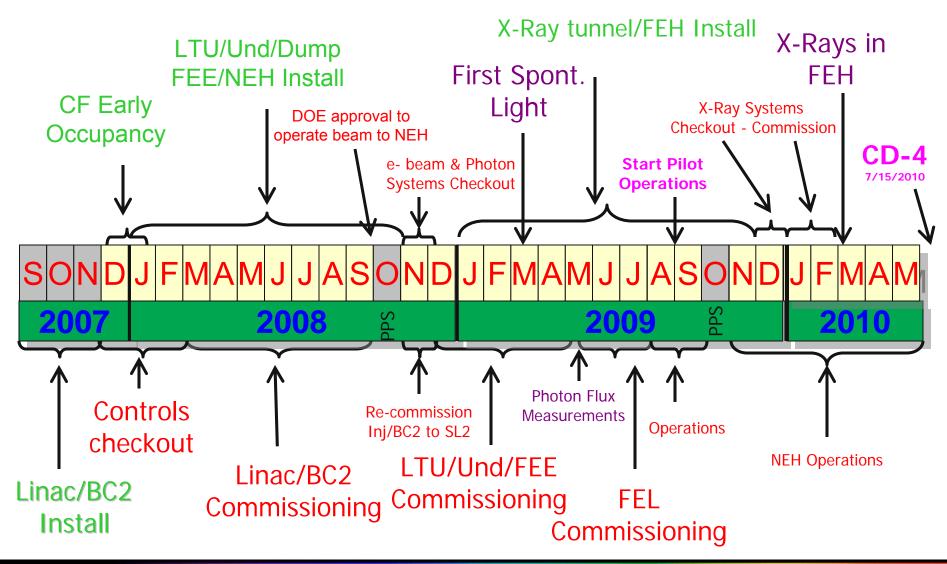
Diagnostics


- Beam position monitors
- Beam finder wire
- X-ray detection beam loss monitors and dosimetry

3 BPM tests


Beam Loss Monitor

BPM Testing at Argonne


Single Undulator and Long Term Tests at Argonne

- Prototypes proved designs met specifications
- First Article Production Components fully integrated – any problems resolved before production
- Functions as a test stand and integration tool until all 33 systems are commissioned at SLAC

LCLS Installation and Commissioning Time-Line

LCLS project benefits APS

APS continues to be at the cutting edge in the undulator technology

- APS magnet measurement facility one of the main benefactors
- APS excellence in the technology of extruded super smooth vacuum chambers will make possible future high current operations
- APS developed new generation of RF BPMs one shot/one turn
- APS gained an experience in the mass production of undulators that could be important for the renewal project

