

... for a brighter future

High-brightness CW ERL Gun R&D

K. Harkay

APS/Users Monthly Operations Meeting

Dec. 13, 2006

UChicago
Argonne

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Introduction

- ERL requirements *very* demanding on electron gun
- Grand challenges:
 - Extremely low emittance AND
 - High average current
- Physics and engineering of high brightness guns have long been pursued – performance achieved but at low duty factors
- Interest in high-average-power FELs and ERLs is driving a vigorous CW gun R&D effort world-wide

Thanks to Manoel Conde, John Lewellen, Yuelin Li, Ali Nassiri, Yin-e Sun, and Marion White for discussions and input

Representative ERL gun requirements

Cornell ERL Parameters¹ Scaled to 7 GeV

	APS	ERL			
	now	High flux	High coherence	Ultrashort pulse	
Average current (mA)	100	100	25	1	
Repetition rate (MHz)	$0.3 \sim 352$	1300	1300	1	
Bunch charge (nC)	0.3~60	0.077	0.019	1	
Emittance (nm)	$3.1 \ge 0.025$	$0.022 \ge 0.022$	$0.006 \ge 0.006$	$0.37 \ge 0.37$	
Rms bunch length (ps)	$20 \sim 70$	2	2	0.1	
Rms momentum spread $(\%)$	0.1	0.02	0.02	0.3	

- Promise of very high brightness due to very low emittance & energy spread, even for 25 mA
- Different modes may not use the same gun

[1] G. Hoffstaetter, FLS 2006 Workshop, DESY

Slide courtesy M. Borland, MAC presentation

Anatomy of an ERL gun/injector

	Operational ERL guns			ERL guns under commission	
Facility	JLab ERL FEL	JAERI ERL	BINP ERL FEL	Daresbury ERLP	Cornell ERL
Gun type	DC	DC	DC	DC	DC
Voltage (kV)	350	230	300	350	300 <mark>(750)</mark> *
Cathode	photocathode (GaAs)	thermionic	thermionic	photocathode (GaAs)	GaAs or GaAsP
Average current (mA)	10	5	20 ~ 40	6.5	100*
Beam energy after booster (MeV)	7~10	2.5	2	8.35*	5 ~ 15*
Booster type	SC rf	SC rf	NC rf	SC rf	SC rf
Booster frequency (MHz)	1497	499.8	180	1300	1300
Norm. rms emit (μm)	<10	30	32	1.5*	<1*
Note				first beam in 08/2006	first beam 09/2006

ε = 0.07 nm @ 7 GeV 🗸

Normalized emittance $ε_N = ε γ = ε$ (14000)

* design values

ERL Gun R&D

DC gun challenges

- Photocathode QE, lifetime
- XUHV req'd, < 0.1 nT</p>
- Space charge emittance compensation (solenoid)
- Voltage breakdown issues high standoff ceramic
- Power supply: 100mA x 750kV = 75 kW
- Drive laser or high voltage pulser or buncher
- Safety, reliability, stability

Cornell DC gun + SC rf booster (S. Gruner)

ERL Gun R&D

APS/Users Ops Mtg, Dec 2006

	ERL guns under development					
Facility	Rossendorf, Germany	LANL/AES	BNL/AES	Peking Univ., China		
Gun type	SC rf	NC rf	SC rf	DC + SC rf		
Gun frequency (MHz)	1300	700	703.75	1300		
Cathode	Cs ₂ Te	multi-alkali	multi-alkali /diamond	Cs ₂ Te		
Average current (mA)	1	100	500	1.6 5 (0.27 achieved)		
Norm. rms emit (µm)	0.5 – 2.5	6	2	3 – 5 (achieved)		
Energy at gun exit (MeV)	9.5	2.5	2	2.6 (1.1 achieved)		

Compiled by Y.-E. Sun

Predecessor holds record: 32 mA, $\epsilon_N \sim 7\mu m$

Thermal/vacuum management: 100 mA NC rf gun dissipates 800 kW!

K. Harkay

ERL Gun R&D

SC RF gun challenges

- Least mature, most promising
- Cathode compatibility with rf and SC environment
- Thermal isolation and integration of cathode (laser power) with cavity
- Emittance compensation: magnetic shielding req'd, can't use solenoid
- Drive laser
- Reliability

AES/BNL SC rf gun (A. Burrill et al)

K. Harkay

ERL Gun R&D

APS/Users Ops Mtg, Dec 2006

Towards R&D program at APS: expertise/facilities

APS

- Laser physics, gun dynamics theory and modeling, NC/SC rf, Injector Test Stand, photocathode NC rf gun operation for LEUTL, engineering, photocathode theory
- Argonne
 - HEP, Advanced Wakefield Accelerator group: high QE photocathodes, NC rf gun, modeling and design
 - PHY: SC rf
 - AST-ONR: CW guns, high avg power FELs (Navy)
 - MSD: cathodes, ceramics
- Local area
 - FNAL: high brightness injector, ILC R&D, dynamics, SC rf
 - Universities: NIU, ...

Summary

- ERL CW guns extremely challenging: pushing significantly beyond present state-of-the-art
- Performance goal: to achieve very low emittance and high average current
- R&D is vigorously being pursued world-wide; planning at APS underway
- All are welcome to attend ERL Journal Club (send me email): http://www.aps.anl.gov/Accelerator_Systems_Division/Accelerator_ Physics/

