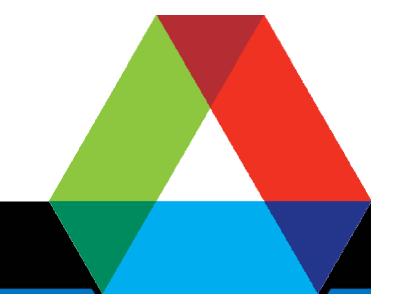


Paths for Improvements in Beam Stability


Office of Science

John Carwardine 8/23/06

A U.S. Department of Energy laboratory managed by The University of Chicago

Continuation of an on-going program...

- APS provides excellent beam stability, and continues to commit significant resources to ongoing improvements
- Updated beam stability performance requirements were developed in 2005, culminating in a "Five year plan for APS beam stabilization" in October 2005:
 - New long-term beam stability specification.
 - 5-year roadmap that covered multiple topic areas.

Long-term beam stability goals

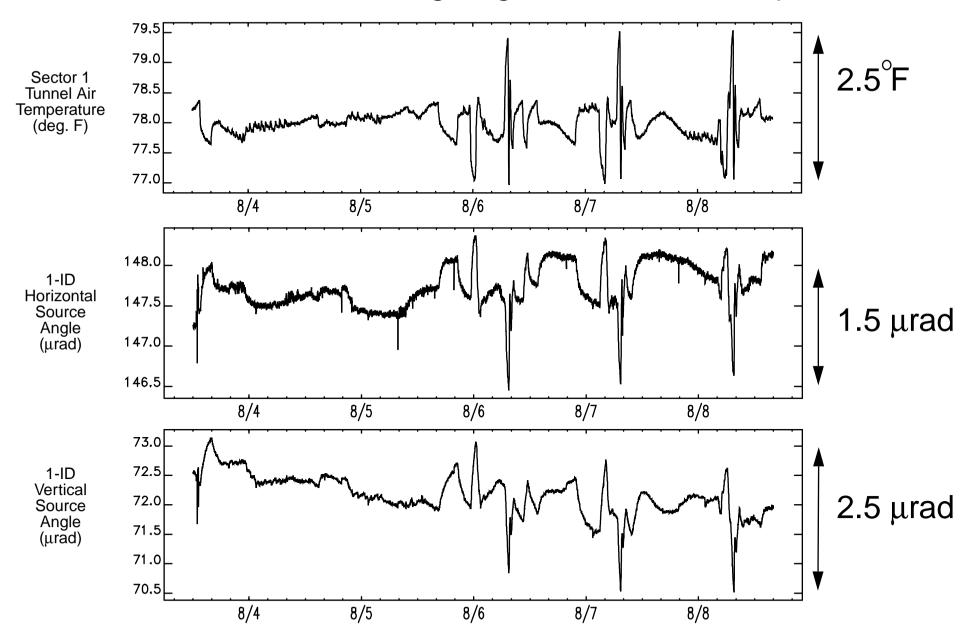
New long-term stability goals were developed by Glenn Decker:

- Take into account the significantly smaller APS beam size.
- Anticipate future user needs.
- Include a frequency range over which the specification is valid.

One-week drift specification

- Vertical: 1.0 microns / 0.50 microradians p-p
- Horizontal: 5.0 microns / 1.0 microradians p-p
- Long-term AC goals (5% of present APS beam size, 0.017 Hz to 200Hz)
 - Vertical: 0.42 microns / 0.22 microradians rms
 - Horizontal: 3.0 microns / 0.53 microradians rms

For reference, published historical values (5% of original APS beam size) are


- Vertical: 4.4 microns / 0.45 microradians rms
- Horizontal: 16 microns / 1.2 microradians rms

Multiple facets covered by the Five-year plan...

Making precision, stable measurements of electron orbit and photon trajectory:

- "Decker Distortion" allows xray bpms to be used in the ID lines.
- Improvements to rf bpm and photon bpm electronics.
- Exploring new options for accurately measuring photon trajectory.
- Portable detector for beamline measurements.
- Attenuation of residual beam motion using feedback/control
 - Orbit feedback and orbit correction applications.
 - Faster processing for orbit correction.
 - More correctors available to the AC orbit correction system.
- Improve SR air temperature stability.

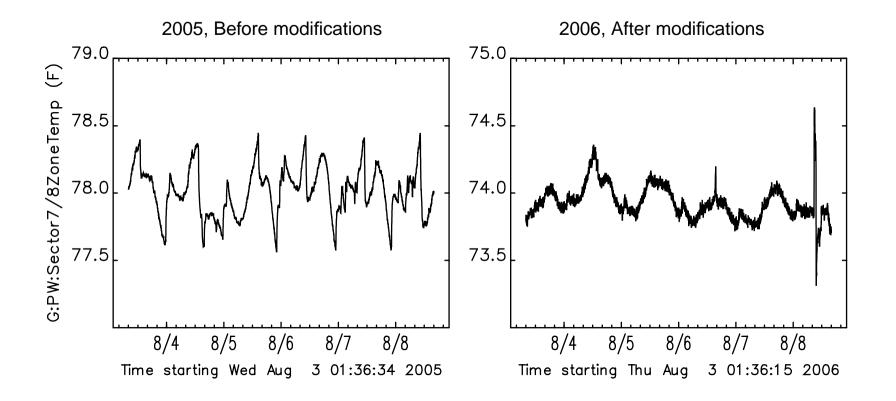
Variation of Source Pointing Angle with Tunnel Temperature

SR tunnel temperature stability is one aspect...

- Original tunnel temperature stability spec. was +- 1 deg. C (+- 1.8 deg.F)
- This has generally been met, however enhanced accelerator performance (e.g. reduced emittance) and a higher level of beamline sophistication make this level of stability insufficient.

Some issues...

- SR air handling units were designed for a much higher heat load than exists, and are unable to provide the fine control now needed.
- Air from the experiment hall is designed to infiltrate the SR tunnel, so temperature variations in the experiment hall impact the storage ring.
- SR temperature stability is affected by chilled water temperature and outdoor air temperature.



Improvement studies...

- Air handling units in Sectors 2-6 (3 units) have been modified as a test, with significant improvements observed:
 - Smaller control valves provide finer resolution of control.
 - Dampers were closed to prevent influx of outside air.
 - If implemented throughout the SR, there are also energy savings.
- A proposal to upgrade all air handling units has been submitted to the DOE energy savings program (Marvin Kirshenbaum):
 - If approved, the work would be done at no cost to the APS.
 - Approval could come as soon as October, with work beginning as early as the Jan 07 shutdown.

Results of Air-Handling System Modification: Control Valve Replacement

Improvement plan...

Short term

- Implement changes already in place at Sectors 2-6.
- Continue to make incremental improvements to get the best from the existing system:
 - Better stability of chilled water.
 - Better control of water temperature.
 - Better preventative maintenance program.
 - Better control of the experiment hall air temperature.

Longer term

 Consider more significant changes to the air handler design if the incremental improvements do not get to the level we need.

