The LCLS Project

Stephen Milton, APS

Argonne National Laboratory

Ą

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

History of X-Ray Generation

Multiple Electrons

Incoherent Emission

Coherent Emission

If the electrons are independently radiating light then the phase of the their electric fields are random with repect ot one another and the electric field scale as the square root of the number of electrons

If the electrons are in lock synch are radiate coherently then the electric field grows linear with the number of electrons

The power goes as the square of the field and if N is very large one can get an enormous gain in power emitted.

This is the essence of the Freeelectron laser.

Interaction Between the Electron and EM Field

If the electron oscillates in phase with a co-propagating EM field of the correct frequency it can pick up or lose a net amount of momentum. Whether it picks up momentum or loses some is depended on the phase relationship.

In an assemble of electrons this process can create microbunching within the macroscopic electron bunch.

Simulated Microbunching in the Beam

At entrance to the undulator

Exponential gain regime

Saturation(maximum bunching)

Excerpted from the TESLA Technical Design Report, released March 2001

Self-Amplified Spontaneous Emission (SASE)

Exponential Growth

Required Conditions

S. Milton et al., Science, Vol. 292, Issue 5524, 2037-2041 (2001)

Next Generation Capabilities

The World's First X-Ray Free-Electron Laser

Strong Scientific Case

- Presented to BESAC 10-Oct-2000
- Critical Decision 0 approved 13-June 2001

Program developed bv international of team scientists working with accelerator and laser physics communities

"the beginning.... not the end"

Femtochemistry

Nanoscale Dynamics in Condensed matter

Atomic Physics

Plasma and Warm Dense Matter

Structural Studies on Single Particles and Biomolecules

FEL Science/Technology

LCLS Project Overview

1.9 Conventional Facilities

Project Cost and Schedule

- \$315M Total Estimated Cost range
- \$387M Total Project Cost range
 - FY2005 Long-lead purchases for injector, undulator
 - **FY2006** Construction begins
 - January 2008 FEL Commissioning begins
 - September 2008 Construction complete

LCLS Project: ANL Component

U.S. Department

of Energy

Summary of Nominal Undulator Parameters

•		May 2003	Today	
•	Undulator Type	planar hybrid	planar hybrid	
•	Magnet Material	NdFeB	NdFeB	
•	Wiggle Plane	horizontal	horizontal	
•	Gap	6.0	6.8	mm
•	Gap Canting Angle	0.0	4.5	mrad
•	Period Length	30.0 ± 0.05	30.0 ± 0.05	mm
•	Effective On-Axis Field	1.325	1.249	Т
٠	Effective Undulator Parameter K	3.630 ± 0.015%	3.500 ± 0.015%	
		0.40	0.40	
•	Module Length	3.40	3.40	m
•	Number of Modules	33	33	
•	Undulator Magnet Length	112.2	112.2	m
•	Standard Break Lengths	18.7 - 18.7 - 42.1	48.2 - 48.2 - 94.9	cm
•	Total Device Length	121.0	131.9	m
	Lattice Type	FODO		
	Lattice Type Magnat Tashpalagu	FODO BMO	FODO	
	Magnet rechnology			
•	Quadrupole Core Length	5	7	cm
•	Integrated QF Gradient	5.355	3.000	Т
•	Integrated QD Gradient	-5.295	-3.000	Т
•	Average β Function at 1.5 Å	18	30	m
•	Average $\hat{\beta}$ Function at 15. Å	7.3	10	m

Treaty flange locations are shown. Toroid moved to other side of treaty flange.

Dump line and Muon shielding moved 8 m upstream.

Prototype Undulator at ANL

......

0

0

Vacuum Chamber Goes in Here

. 10.

-

Support Assembly

Error Source	$<\sigma_{i}>$	< <i>σ_i> f</i>	f _i	$<\sigma_i>f_i$	Units
		<i>f</i> =0.268 (25% red.)		(24.2% red.)	
Hor/Ver Optics Mismatch (ζ-1) ^{0.5}	0.59	0.18	0.456	0.31	ξ<1.1
Hor/Ver Transverse Beam Offset	23	5.7	0.177	3.7	μm
Module Detuning <i>∆K/K</i>	0.051	0.016	0.402	0.024	%
Module Offset in x	952	301	0.125	140	μm
Module Offset in y	268	72	0.298	80	μm
Quadrupole Gradient Error	8.7	2.3	0.028	0.25	%
Transverse Quadrupole Offset	4.4	1.3	0.215	1.0	μm
Break Length Error	17.1	5.4	0.048	1.0	mm
Pioneering Science and Technology	Can be mitigated through steering.	Office of Scienc U.S. Departmer of Energ			

APS vs. LCLS Undulators

- Gap
 - APS undulators have variable gap for tuning the wavelength with minimal gap of ~ 7.5 mm
 - The LCLS undulator gap is fixed and beam energy is used to tune the wavelength. The gap is roughly 6.5 mm
- Period
 - The APS undulator A period is 3.3 cm
 - The LCLS undulator period is 3.0 cm
- Length
 - APS undulators are typically 2.4-m long and there is roughly 80 meters installed to date
 - The LCLS undulators are each 3.4-m long and when the full 33undulator system is installed in 2007 it will stretch out over 130 meters.

Undulator Challenges

- K Control
 - Must maintain K to within 1.5 x 10⁻⁴
 - Implies
 - $\Delta T/T < +/- 0.2$ degrees C
 - Δ gap/gap < +/- 1 micron
 - Will use a "Canted Pole"
- Alignment Issues
 - Quadrupoles must be "centered" to better than 1 micron
 - Undulator centers must be within 50 micron
 - We expect natural motion to me roughly 2 microns/meter/day at the SLAC site
 - We will use beam-based alignment with high precision RF beam-position monitors along with wire-position monitors and hydrostatic leveling systems
 - Temperature variations effect
 - Strength of the undulators
 - accuracy of the BPMs and other monitors
 - Support structures

Undulator Pole Canting

- •Canting comes from wedged spacers
- •4.5 mrad cant
- •Gap can be adjusted by lateral displacement of wedges
- •1 mm shift means 4.5 microns in gap, or 8.2 Gauss
- •B_{eff} adjusted to desired value

Courtesy of Liz Moog

Office of Science U.S. Department of Energy

Initial trajectory before any correction applied

U.S. Department

of Energy

- Save BPM data at 14 GeV
- Change energy to 7 GeV (scaling linac magnets)
- Re-establish launch pos. & angle into undulator
- Save new BPM data at 7 GeV
- Repeat for 4.3 GeV (klystrons turned off in L3-linac)
- Calculate quad and BPM alignment corrections
- Move quadrupoles (only when $|\Delta x| > 7 \ \mu m$)
- Adjust BPM offsets in software
- Repeat entire process until trajectory change is <50 μm at 4.3 GeV (3 times initially, once for touchup)

Courtesy P. Emma

After 3rd pass of BBA (13.6 GeV)

Science and

Fechnology

+ Quadrupole positions
o BPM readback
– e⁻ trajectory

 $\Delta \varphi \approx 98^{\circ}$

RON (FEL-code) simulation shows L_{sat} increased by <1 gain-length; R. Dejus, N.Vinokurov Courtesy P. Emma

Office of Science

U.S. Department

of Energy

BPM Cavity Design

- 8 mm Beam Pipe dia. into BPM
- 10 mm BPM inner dia.
- Solid Copper Body

 Waveguide transition brazed to body

H-field Produced by 0.4 mm Horizontal Offset

- Waveguides are magnetically coupled to the cavity fields.
- Waveguide coupling is symmetric in each plane.
- Cross-talk contribution from the nonzero horizontal component of the hfield at ports 2 and 4 couples into waveguide.
- Cross-talk can likely be improved by reducing waveguide coupling and by reducing the waveguide height.

Courtesy G. Waldschmidt 29

Integrating Monitoring Systems into Cradle / Support System

Since the cradle needs to be easily removable, we cannot attach the monitoring systems to it. Hence, both WPM and HLS need to be mounted to support table. However, the mounting has to be accomplish in a way which will force the sensors to follow the cradle motion

Major Events/Milestones

Undulators

- All major contracts will be awarded by the end of this week

Construction of Undulators

- Would like 1st article delivery in 2005 to ease the schedule
- Must have assembly started beginning of FY06 (when construction funds arrive)

• Magnet Measurement Facility (Built at SLAC)

 Need to get a magnet to them soon (by end of calendar year) to begin initial controls integration

• 33rd Magnet Arrives

- March 07
- End of 2007
 - Expect undulator system installation complete

Summary

- The LCLS will be the first X-Ray Free-electron Laser
- Argonne's Role is two-fold
 - We are responsible for delivery and validation of the complete 130-m+ undulator system
 - Our scientists are already actively participating and leading the development of some of the first exciting pioneering experiments that will be performed on the LCLS
- We expect 1st scientific results in 2008

