

XOR Tactical Plan – update

Gabrielle Long

June 2, 2005

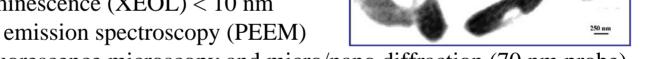
Advanced Photon Source

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Argonne National Laboratory

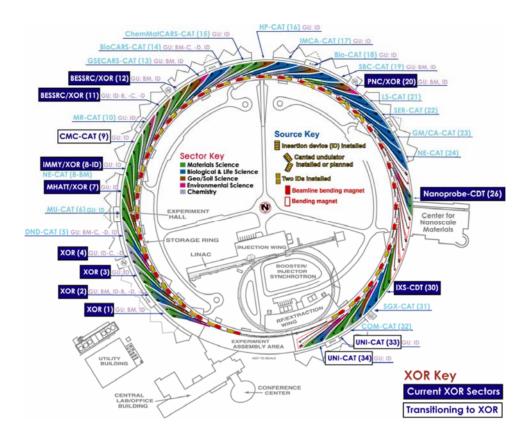
Strategy for optimal utilization of XOR facilities

- Optimize the source and the optics
 - One technique on a beamline
 - More than one technique on a beamline bring the X rays to the experiments
 - Many active stations for techniques such as time-resolved science to make simultaneous use of special operating modes
- Opportunity to increase the quality and quantity of beam time at the APS
 - Leading edge capabilities
 - Support the Center for Nanoscale Materials
 - Ease the pressure on our oversubscribed beamlines


Facilities in support of the CNM - examples

Nanoprobes around the APS ring

PEEM



- (6 13 keV) scanning fluorescence microscopy and micro/nano diffraction (70 nm probe)
- (1 4 keV) scanning transmission microscopy and fluorescence microscopy
- (1 4 keV) coherent scattering (50 nm probe)

nanomagnetism capabilities

Additional capabilities at the APS

characterization of magnetic interfaces using magnetic reflectivity SAXS and GISAXS coherent diffraction for imaging at the nanoscale diffraction under *in situ* growth conditions x-ray photon correlated spectroscopy

Many-variable optimization process that started within XOR. We are on the 9th (-> 10th) version of the XOR Plan. We are on the 1st (-> 2nd) version that includes the APS CATs. ... your comments and corrections welcome

XOR operation of APS sectors and staffing

- Responsible for operating sectors 1, 2, 3, 4, 7, 8, 11, 12, 20 + next year add 9, (32), 33, 34
- Collaborative development teams: 26, 30, 11-BM
- Opportunities to move toward optimized, dedicated facilities, increase GU access, support and grow strong user communities
- How can we begin to implement the plan
 - Internal funding

· · · · ·	•	U			
	Staff	Technicians	Post Docs	Students	No. of Beamlines (in construction)
2001	28	8	10	5	8(2)
2002	31	6	8	7	8(2)
2003	51	6	10	8	17(3)
2004	64	5	17	12	19(3)
2005*	69	8	19	11	21(3)

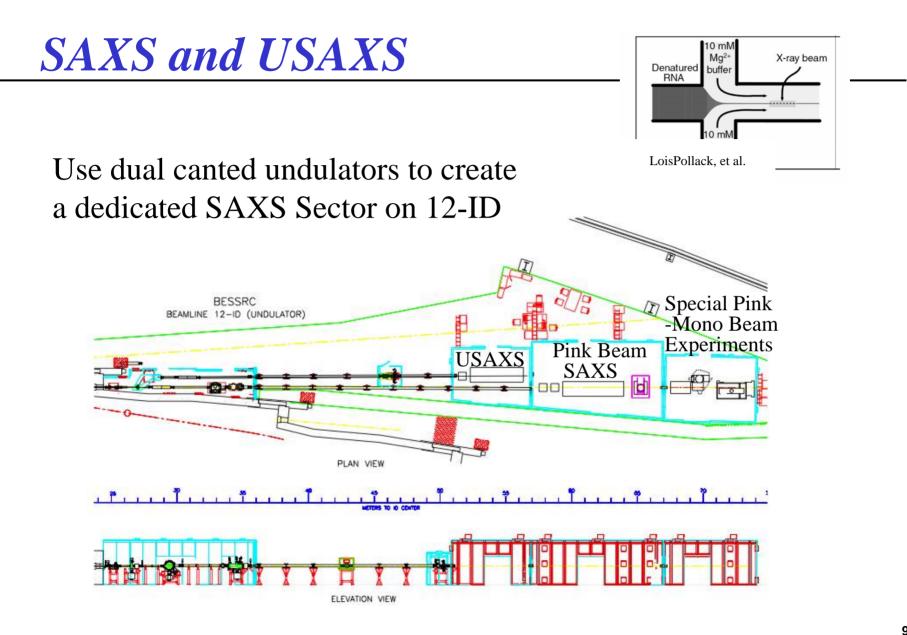
- Develop outside funding

Strategic planning within XOR

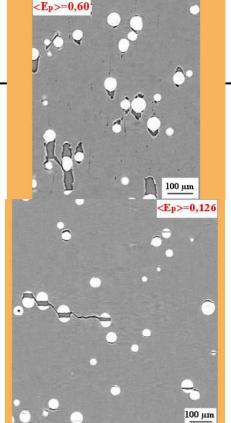
- XOR Strategic Planning Meeting August 11-12, 2004
 - Scientists from sectors 1, 2, 3, 4, 7, 8, 11, 12, 20 presented their ideas
 - Outcomes
 - Extended abstract book
 - Presentation at the APS Strategic Planning Meeting September 2, 2004
- APS Users' Organization Steering Committee
 - January 13, 2005
- APS Partner Users' Council meeting
 - January 14, 2005
- APS Scientific Advisory Committee Meeting
 - January 27, 2005
- APSUO/PUC-sponsored meeting with APS resident users
 - April 15, 2005
- XOR comment line May 1 20, 2005
 - Comments can be read online starting next week
- DOE review May 25, 2005
- Announce the beginning of implementation June 2, 2005

Dedicated facilities - partial listing

- Inelastic x-ray scattering on 3-ID, 30-ID, and (in future) 9-ID
- Nanomagnetism on 4-ID-C, 4-ID-D and (as yet uncommitted) sectors
- Synchrotron environmental science on Sector 13 (GSE-CARS) and Sector 10 (MR) and on 20-ID
- High energy x-ray science on 1-ID and 11-ID
- X-ray diffraction on 6-ID, 33-ID, 1-BM and 33-BM
- X-ray micro/nanodiffraction on 2-ID-D, 7-ID, 26-ID, 34-ID
- Powder diffraction on 11-BM, 11-ID (HP on 13-ID, 13-BM, 16-ID)
- X-ray absorption fine structure on 9-BM, 20-BM, 20-ID
- X-ray full-field imaging on 32-ID, coherent diffraction imaging on 34-ID
- Time domain science on 7-ID, 8-ID and 11-ID
- Small angle x-ray scattering (SAXS) and USAXS on 12-ID
- Surface and interface (*in-situ*) scattering (tbd) planning workshop 9/05
- Nanomaterials science on 26-ID


Begin implementation

- Begin implementation with internal funding
- Start three projects
 - Dedicated SAXS and USAXS
 - Develop X-ray imaging at the APS
 - Create premier high energy x-ray scattering capabilities

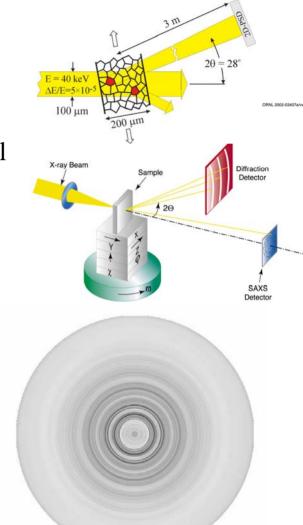


Dedicated imaging ID beamline

- Phase imaging / tomography
- Diffraction topography
- Real-time high speed imaging
- Diffraction enhanced imaging
- USAXS imaging
- Many benefits

- Provides immediate home for imaging to satisfy demand and expand user base.
- Frees 1-ID to become dedicated to high energy
- Potential future expansion into long beamline with optimized insertion devices.

High energy x-ray scattering


dedicated on 1-ID

- Materials research
 - Macroscopic stress/strain, texture
 - Stress/strain, texture on a grain by grain level
 - High-energy small-angle scattering
 - High-energy x-ray imaging
- Instrumentation development
 - Brilliance preserving optics
 - Microfocusing optics
 - 2 undulators for full energy tunability

dedicated on 11-ID

- 11-ID-B and 11-ID-C dedicated to
 - high energy powder diffraction pdf and diffuse scattering

Crystallograph

Pioneering Science and Technology Determining metal ion distributions using resonant scattering at very high-energy *K*-edges: Bi/Pb in Pb₅Bi₆Se₁₄

Yuegang Zhang,^a Angus P. Wilkinson,^{ba} Peter L. Lee,^a Sarvjit D. Shastri,^a Deming Shu,^a Duck-Young Chung^c and Mercouri G. Kanatzidis^c

Summary

- Begin implementation
 - Dedicated SAXS and USAXS on 12-ID
 - Develop X-ray imaging at the APS on 32-ID
 - Create premier high energy x-ray scattering capabilities on 1-ID and 11-ID
- Continue to work on the plan
 - Your input needed
- Support world-class facilities for worldclass science
 - New users
 - New resources

