Synchrotron-based Studies of Geomicrobiology

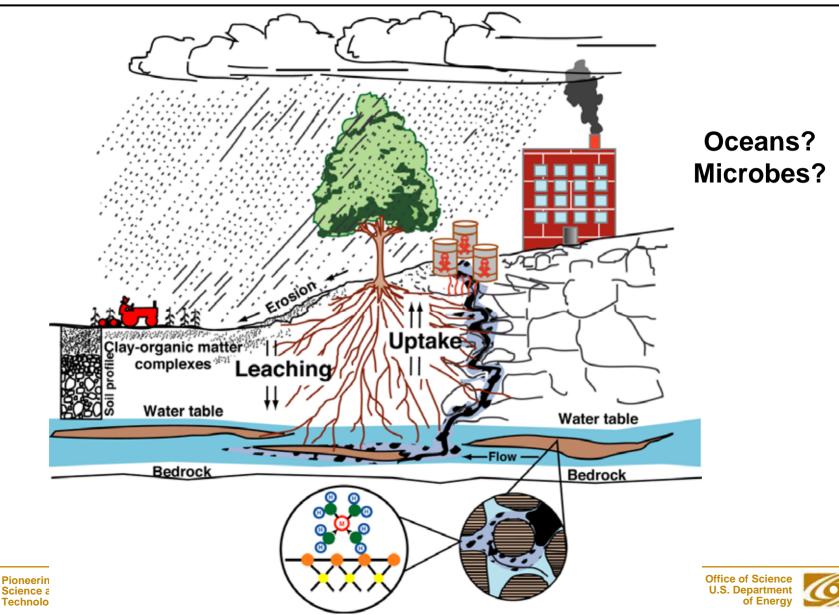
Ken Kemner

Molecular Environmental Science Group, Environmental Research Division APS/Users Monthly Operations Meeting

December 16, 2004

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago


Outline

- What is Environmental Science?
- Introduction to Geomicrobiology and its role in Environmental Science
- The use of hard synchrotron x-ray (spectro)microscopy to investigate Geomicrobiology systems
- Final thoughts

What is Environmental Science?

Acknowledgements

- ANL-Environmental Research Division (Molecular Environmental Science Group)
 - E. O'Loughlin (Environmental Chemist)
 - S. Kelly, M. Boyanov (X-ray Physicists)
 - K. Orlandini (Environmental Radiolimnologist)
 - D. Sholto-Douglas, H. Meyer (Microbiologists)
- ANL-Advanced Photon Source
 - B. Lai, J. Maser, Z. Cai (X-ray Microscopists)
- ANL-Electron Microscopy Center
 - R. Csencsits, R. Cook (Electron Microscopists)
- ANL-Biosciences Division
 - C. Giometti (Microbial Proteomics)
- U. of Notre Dame
 - J. Fein (Geochemist, Geomicrobiologist)
 - C. F. Kulpa, Jr., M. A. Schneegurt (Microbiologist)
- U. of Southern California
 - K. Nealson (Microbiologist, Geomicrobiologist)
- U. of California, Berkeley
 - J. Banfield (Mineralogist, Electron Microscopist, Geomicrobiologist,)
- U. of Guelph
 - S. Glasauer, T. Beveridge (Microbiologists, Geomicrobiologists)

Why are microbes/bacteria important in Environmental Science?

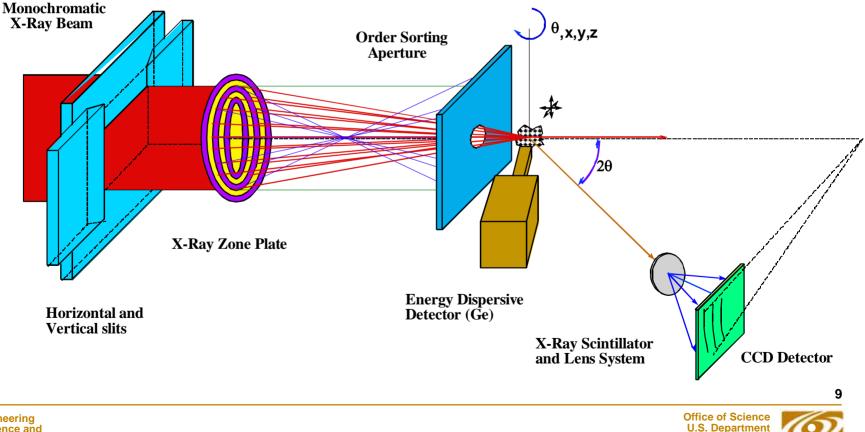
- ~3600 identified minerals, yet vastly more microbial species have already been identified (less than 0.1% culturable)
- Size (~1 micron), large surface to volume ratio
- Microbes can use a wide variety of electron donors and exploit many different alternative oxidants (catalyze numerous reactions).
- 10⁶ 10⁹ cells/gram of soil or subsurface material
- Microbes can transform poisons (heavy metals) into harmless compounds, or repackage them so they are physiologically unavailable (bioremediation).
- Microbes degrade organic pollutants, restore key nutrients to depleted soil, or act as a sink for greenhouse gases (CO2), from the atmosphere.
- Profound effects on major societal issues such as groundwater quality, environmental contamination, the loss of productive agricultural lands, and global warming.

Why use hard x-rays for investigating environmental systems?

- Hard x-rays (i.e. greater than ~2 keV) interact "weakly" with matter (relative to charge particle probes) and enable the investigation of hydrated and/or buried samples.
- Hard x-rays enable highly sensitive elemental analysis on extremely small objects.
- High sensitivity of x-rays enables x-ray absorption spectroscopy (i.e. interrogation of chemistry)

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Differences between planktonic and surfaceadhered bacteria to heavy metal exposure

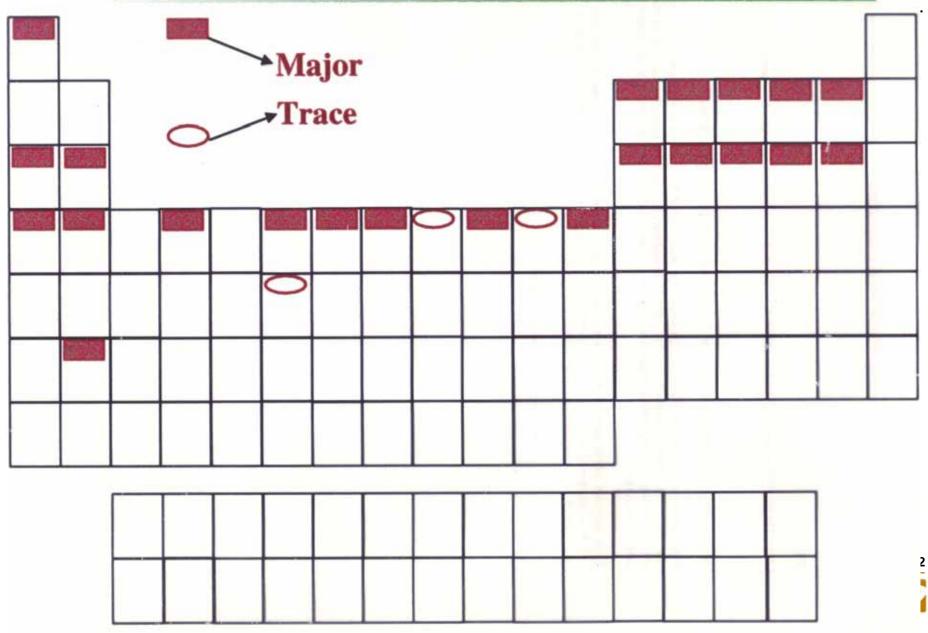

- Attachment of cells to surfaces during biofilm formation leads to major changes in metabolism, resistance, and survivability.
- Although microbes appear to be able to catalyze almost any reaction from which energy can be obtained, it is difficult to determine the mechanisms whereby catalysis occurs at the microbe-substrate interface.
- It is difficult to quantify the concentrations of metals, their cellular locations, and their redox states.
- Can XRF microscopy identify differences between planktonic and surface-adhered bacteria upon exposure to heavy metals and changes to heavy metal speciation upon exposure to bacteria?

XRM with Fresnel zone plates:

X-RAY MICROPROBE BEAMLINE AT APS (2-ID-D/E)

of Energy

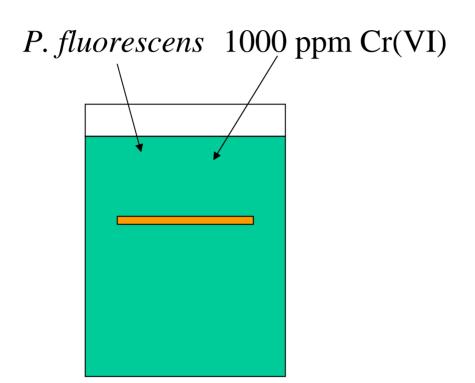
Sample X-ray IT Zone **Plate** IF Intensity **Fluorescent X-ray Energy Atomic Species** Fe What can it do for me? **Spatially resolve (150 nm):** Distribution Valence state **Chemical speciation** of elements K. M. Kemner, K. H. Nealson*, B. Lai J. Maser, Z. Cai, D. Legnini, P. Ilinski M. A. Schneegurt**, C. F. Kulpa, Jr.** Argonne National Laboratory *Caltech/Jet Propulsion Laboratory **Office of Science Pioneering** Science and U.S. Department **University of Notre Dame 5 microns of Energy Technology


2-D X-ray Fluorescence Imaging of Individual hydrated Bacterium with Zone Plates at the APS

Biological Abundance

1 H			245		M	ajor											2 <u>He</u> 4.00
3	4 Be	Major										5 B	6 C	7 N	<u>8</u> 0	9 E	10 Ne
6.94	9.01		Orliace									10.80	12.01	14:01	16.00	19.00	20.18
11	12											13	14	<u>15</u>	16	17	18
Na	Mg											AI	SI	Р	S	CI	Ar
19	20	21	22	23	24	25	26	27	28	29	30	26.98 31	28.09 32	33	34	35	39.95 36
ĸ	Ca	Sc	TI	v	Cr	Mn	Ee	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.89		58.69	63.55	65.39	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.75	127.60	26.91	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hq	TI	Pb	Bi	Po	At	Rn
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112						
Fr	Ra	Ac	Rf	Ha	Sg	Ns	Hs	Mt	Uun	Uuu	Uub						
(223)	226.03	227.03	(261)	(262)	(263)	(262)	(266)	(266)	(269)	(272)	(277)						

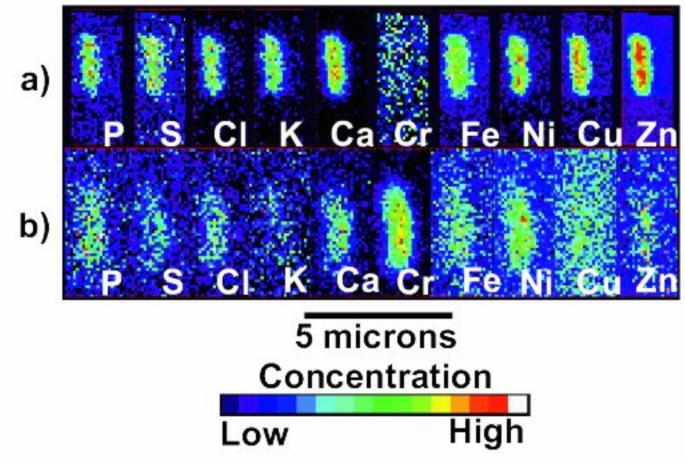
58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce		Nd											
140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.03	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)


Crustal Abundance

BiologieaAAbuddance

1 H 101					•M	ajor											2 <u>He</u> 4.00
3	4 <u>Be</u>		*Major Trace										6 C	7 N	8	9 <u>F</u>	10 <u>Ne</u>
6.94	9.01												12:01	14.01	16.00	19.00	20.18
11 Na	<u>12</u> Mg												Si	15 P	16 S	CI	18 Ar
22.00	24.31											<u>Al</u> 26.98	28.09	30.97	32.06	35.45	39.95
19	20	21	22	23	24	25			28	29	30	31	32	33	34	35	36
K	Ca	Sc 44.96	<u>Ti</u> 47.88	V 50.94	Cr 52.00	Mn 54.94	55.85	Co 58.93	Ni 58.69	Cu 63.55	Zn 65.39	Ga 69.72	Ge 72.59	As 74.92	Se 78.96	Br 79.90	Kr 83.80
37	38	39	40	41	(12)	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.07	the subscription of the local division of th	106.42	No. of Concession, Name of Street, or other	112.41	114.82	No. of Concession, name	No. of Concession, name	127.60	No. of Concession, name	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs 132.91	Ba 137.33	La 138.91	Hf 178.49	Ta 180.95	W 183.85	Re 186.21	Os 190.2	Ir 192.22	Pt 195.08	AU 196.97	Hg 200.59	TI 204.38	Pb	Bi 208.98	Po (209)	At (210)	<u>Rn</u> (222)
87	88	89	104	105	106	107	108	109	110	111	112			200.00	(200)	(210)	(222)
Fr	Ra	Ac	Rf	Ha	Sg	Ns	Hs	Mt	Uun	Uuu	Uub						
(223)	226.03	227.03	(261)	(262)	(263)	(262)	(266)	(266)	(269)	(272)	(277)						
	1										-					-	
		58	59	60	61	62	63	64	65	66	67	68	69	70	71		
		Ce 140.12	Pr 140.91	Nd	Pm (145)	Sm 150.36	Eu 151.96	Gd 157.25	Tb 158.93	Dy	Ho 164.93	Er 167.26	Tm 168.93	Yb 173.04	Lu 174.97		
		90	91	92	93	94	95	96	97	98	99	100	101	102	103		
		Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		
	_	232.03		238.03		(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)		

What is the role of the physiological state of a microbe (planktonic versus surface-adhered) on its tolerance to heavy metals?


Elements required for life: H, C, N, O, P, Ca, S, Fe, Ni, Cu....

These elements should be in cells.

Elemental distribution in planktonic <u>P. fluorescens</u> w/ and w/out addition of Cr(VI)

K. M. Kemner, S. D. Kelly, B. Lai, J. Maser, E. J. O'Loughlin, D. Sholto-Douglas, Z. Cai,

M. A. Schneegurt, C. F. Kulpa, Jr., K. H. Nealson, "Elemental and Redox Analysis of Single

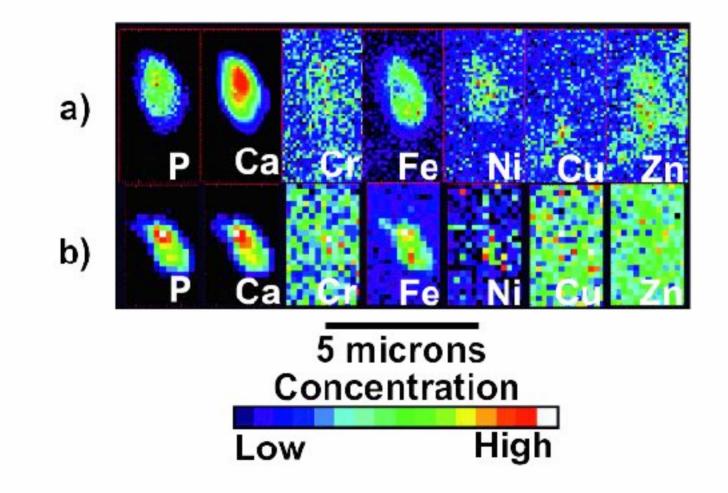
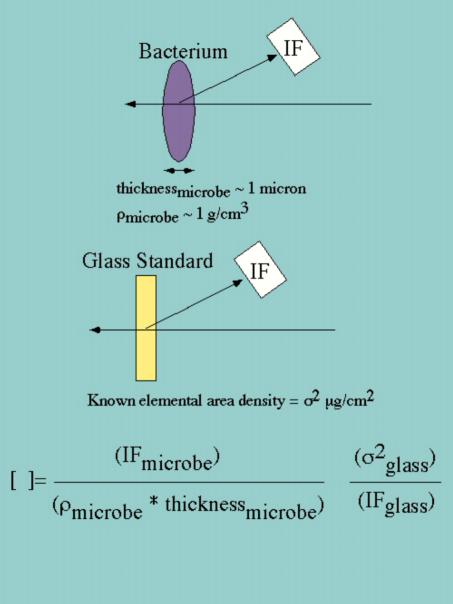

Bacterial Cells by X-ray Microbeam Analysis," Science 306 686-687, 2004.

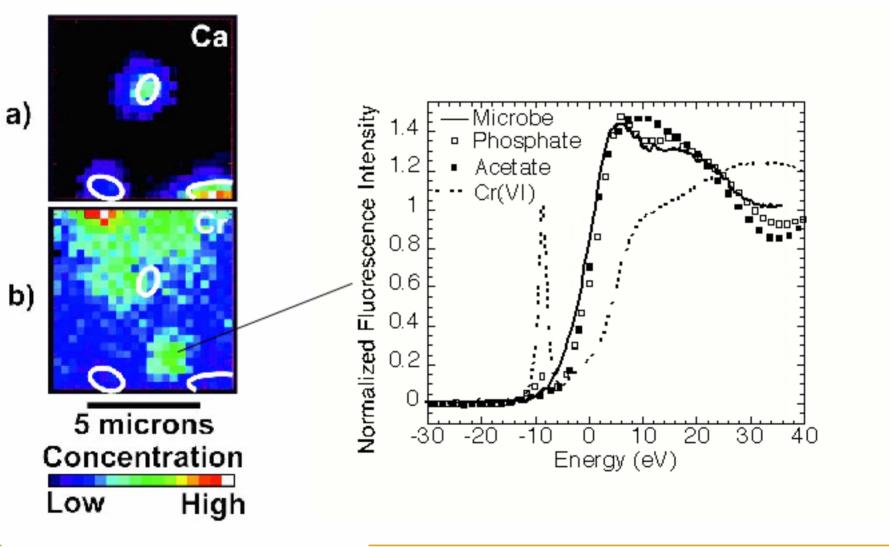
Fig. 1

Elemental distribution in surface-adhered <u>P. fluorescens</u> w/ and w/out addition of Cr(VI)



XRF Elemental Microanalysis of a Bacterium

Results of quantitative XRF elemental


analysis of single cells

	[P]	[S]	[Cl]	[K]	[Ca]	[Cr]	[Mn]	[Fe]	[Co]	[Ni]	[Cu]	[Zn]
Planktonio (5)	16,048 (2,446)	6,625 (1,117)	8,421 (2,628)	3,604 (1,173)	3,815 (392)	9 (2)	22 (4)	156 (23)	190 (37)	120 (33)	201 (46)	1,175 (176)
Planktonic + Cr(VI) (6)	6,156 (1,034)	3,719 (1,516)	3,908 (1,814)	2,201 (1668)	673 (230)	949 (323)	22 (4)	58 (29)	13 (12)	26 (18)	105 (76)	94 (30)
Surface- Adhered (8) Surface-	661,032 (139,416)	*	*	*	570,855 (92,831)	32 (10)	40 (7)	360 (216)	14 (7)	26 (10)	0 (14)	25 (13)
Adhered +Cr(VI) _(10)	419,034 (362,728)	*	*	*	427,987 (147,983)	24 (15)	23 (8)	326 (177)	12 (7)	18 (9)	2 (5)	15 (7)

Spatial distribution and valence state of Cr relative to Surface-adhered cells

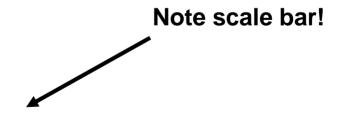
Office of Science U.S. Department of Energy

- The integration of new techniques/tools such as the Advanced Photon Source with multiple scientific disciplines provides new and exciting opportunities for addressing a variety of highly relevant Environmental Science/Geomicrobiology issues.
- Hard x-ray (micro)(spectro)scopy offers many exciting possibilities for future investigations.
- The integration of the strengths of both x-ray and electron microscopies to investigate geomicrobiological systems is especially promising.

Final Thoughts.....

• History of this work.....

These results did not occur during a single beam run



K. M. Kemner, D. B. Hunter, R. Boopathy

XRF can identify elements in bacterial biomass

W. Yun: "Wait about 3 years"

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

XRF elemental mapping may be able to "image" individual bacterial cells

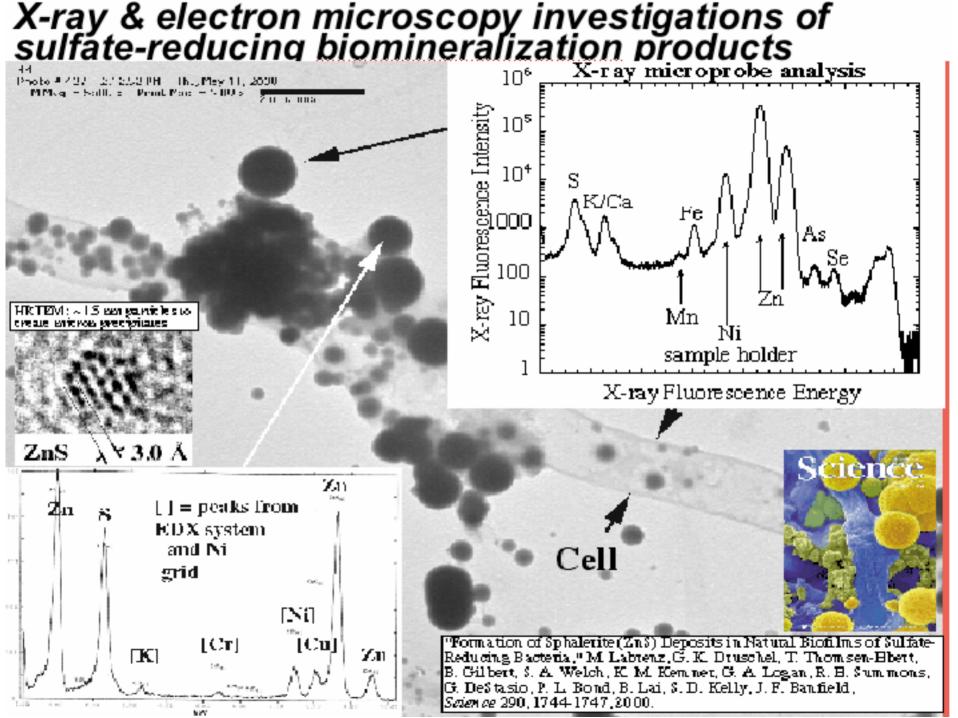
W. Yun: "Wait about 3-5 years"

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Note scale bar!

XRF elemental mapping can "image" individual bacterial cells

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.



of Energy

Final Thoughts

- In 1997, a proposal to "image" individual bacterial cells with high brilliance, hard x-rays was a very strange idea and not well received by many scientists
 - Most physicists did not care about bacteria
 - Most microbiologists thought the cells would "blow up" when subjected to the x-rays
- It took over 7 years from the first attempt (~Feb '97) to image bacterial cells until the "big" publication
- It took ~4 years from the third attempt (~Nov.'98) until the experiments were routine (lots of kinks in experimental procedure to work out)
- A special thanks is owed to W. Yun, B. Lai, and J. Maser (physicists who were willing to try) and M. Schneegurt (a microbiologist who got tired of fighting with me)
- Could something like this happen again??????
 Hopefully, the APS will continue to provide an environment that allows their scientists to explore the very strange ideas

