Front End and Beamline Critical Components

Presented to APS / User Monthly Operations Meeting

Mohan Ramanathan November 18, 2004

Argonne National Laboratory

A

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

The results of recent thermal analysis of front end and beamline critical components

- Front end component analysis has been conducted by Yifei Jaski
- Beamline component analysis has been conducted by Vishwanath Ravidranath and Sushil Sharma

All components are evaluated on common models

Operations Limits

- Maximum temperature on Glidcop surface < 300 °C to prevent creep
- Maximum temperature on cooling channel wall< water boiling temperature at the channel pressure to maintain single phase heat transfer, which is ~ 150 °C
- Maximum von Mises stress < yield stress (300 MPa ~ 450 MPa depend on the Glidcop stock size)

- All models created in ProE for input to ANSYS FEA
- Beam profile is precisely calculated and applied to the model
- Cover all load cases move beam in the mask aperture to identify the worst case

Front Ends

Overview of FE Components

Component	FEv1.2u	FEv1.5	
		(sector 16, 22, 31, 32)	
BM mask	B7-60	B7-70	
1 st fixed mask	M1-30	M1-40	
2 nd fixed mask	M2-20	M2-40	
3 rd fixed mask	L5-83 (exit mask)	M2-50	
4 th fixed mask		M4-40 (exit mask)	
1 st photon shutter	P1-20	P2-30	
2 nd photon shutter	P2-20	P2-30	
Filters	W1-91	none	
Be windows	W1-93/94	W1-82	

Calculations are for 100 mA stored beam with Undulator A at 11 mm

Front Ends

Heat Load Calculation

- Calculate SR beam profile
 - By SRUFF a SR source calculation package written in IDL by Dr. Mati Meron at CARS and contributed to APS. A GUI was developed by Tim Stern, a summer student at XFE group in summer 2003. SRUFF outputs a Gaussian formula up to 4th order

Front Ends

Temperature and Stress Results

- Calculate temperature field
- Using temperature as body load, calculate the stress field
- Repeat same procedure for different beam missteering scenarios to find the worse case

M1-40 temperature at 100 mA, 11 mm gap, h=0.015

M1-40 von Mises stress at 100 mA, 11 mm gap, h=0.015

- There are 66 components (masks/ beam stops in 28 ID beamlines) which are interlocked to PSS for radiation safety protection
- Analysis performed on following standard components

NO.	Components	Distance from the Undulator Source	
1	L5-83: front-end exit mask for all version 1.2 front ends	25.3 m	
2	M4-40: front-end exit mask on version 1.5 front-ends	25.3 m	
3	M7-20: front-end exit mask for 4ID	25.3 m	
4	M4-30: front-end exit mask	26 m	
5	M7-41: beam-line splitter mask for 4ID	26 m	
6	M9-30: white beam stop and pink beam mask	30 m	
7	P5 Integral Shutter	30 m	
8	P4-20: shutter	30 m	
9	P4-31: shutter for 4ID	30 m	
10	P4-50: shutter	30 m	
11	P4-41: shutter for 4ID	60 m	
12	K5-50: white beam stop for 4ID	77 m	

- This list accounts for only 20 of the 66 beamline components!
- Pink beam (white beam reflected of mirrors) components need to be carefully evaluated

Heat Load Calculation

Parameter	Value	
Beam current (mA)	100	
Undulator period length λ (cm)	3.3	
Length of undulator (m)	2.4	
Minimum gap (mm)	11	
Number of periods	72	
Relativistic gamma	13700	
Deflection parameter K	2.62	
Horizontal beam size σ_x (mm)	0.352	
Vertical beam size σ _y (mm)	0.018	

Temperature and Stress Results

P4-50: von Mises Stress Contours

P4-50: Temperature Contours

Results

Components	Temperature (°C)	von Mises Stess (MPa)	Channel Wall Temperature (°C)		
Masks					
L5-83 front end exit mask	195	378	98		
M4-30 front end exit mask	96	151	55		
M4-40 front end exit mask	178	350	68		
M7-20 front end exit mask	156	274	68		
M7-41 beamline splitter mask	172	240	73		
M9-30 white beam stop and pink beam mask	210	285	80		
Shutters					
P5-20 shutter	238	280	95		
P4-20 shutter	144	183	84		
P4-30 shutter	121	175	57		
P4-41 white beam stop	186	175	94		
P4-50 shutter	137	201	62		
K5-50 white beam stop	175	312	135		

Conclusions

Front Ends

- The FEv1.2u can operate with one undulator A at 11 mm gap (k=2.62) upto 130 mA
- Although the photon shutters (P2-30) in FEv1.5 can safely operate at above 200 mA, the stress on masks are far above the limit at 150 mA. Overall, the FEv1.5 can only operate at 130 mA under current criteria
- 3-ID can operate at 115 mA
- 4-ID with UA at 9.5 mm gap and CPU can operate at 100 mA.
 Gap restriction is necessary at higher current

Beamlines

 For beamline components evaluated to date results show that conservative design criteria are met (with some exceptions, e.g. K5-50) for a beam current of ~ 140 mA

11