

Update on the Short Pulse Activities

Dennis Mills Deputy Associate Laboratory Director Advanced Photon Source

APS/User Operations Meeting November 18, 2004

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

People Doing the Work

Accelerator physics issues

- Mike Borland
- Louis Emery
- Kathy Harkay
- Vadim Sajaev
- Yong-chul Chae
- Bingxin Yang

• RF requirements

- Doug Horan
- Geoff Waldschmidt

Insertion devices and radiation properties

- Roger Dejus
- Liz Moog
- Optics for pulse compression
 - Sarvjit Shastri
 - Dennis Mills

The Concept

Pioneering Science and Technology

Possible Options for RF Cavity Placement

from Borland and Sajaev

Accelerator Issues

- Magnitude of the kick (Aiming for 0.2 mrad over rms ∆t of 40 psec)
 - Increase RF voltage?
 - Increase harmonic number?
- Beam lifetime effects appear manageable
- If kick cancellation is not exact, vertical emittance is increased
 - Compensation through adjustment to coupling
 - Linear lattice errors can change the phase advance
 - Coupling may affect cancellation of kicks
 - Sextupole nonlinearities are the worst problem
- Phase and frequency stability need to be looked at in more detail
- Effect of impedance on vertical emittance

- Superconducting cavity at 4.2K should be sufficient for removing power due to rf losses.
- Two 6-cell or possibly a single 9-cell accelerating structure will be necessary to reduce peak surface fields.
 - Each structure will be 0.65 –0.95 meters long.
 - Additional space will be necessary for input couplers, dampers, and structure spacing if needed.
- HOM and LOM damping as well as TM110 degeneracy will require cavity modification.
- RF amplifiers and power supplies are available at appropriate frequency and power levels.

Pulse Length Reduction

- The pulse length can be reduced by:
 - Slits
 - easy to do
 - white beam compatible

Asymmetrically cut crystals

• Uses pathlength differences of top and bottom rays

Asymmetrically Bragg Reflections

Bragg geometries not look too promising

- size of beam requires a large xtal
- Low-order reflections require negative (glancing angle) asymmetries which further expand an already large beam
- 2 crystal geometries can help size expansion but involve dispersive arrangements...

 Θ = Bragg angle

- α = angle between surface and Bragg planes
- β (β ') = angle of major axis of beam w/res to normal to incident (diffracted) beam

Office of Science

U.S. Department

Pulse Compresssion with Laue Crystals

Laue geometries look more promising

- Spatial acceptance can be large
- Focusing can be accomplished without bending
- However, by bending you can satisfy the Roland conditions and reduce the energy spread in the beam.

- At this point there seems to be **no show stoppers from the accelerator physics** point of view, although a few technical details need to refined.
- Need to explore the optics compression ideas to look at all the options and calculate expected throughput.
- Detailed radiation spectral and spatial distributions from the undulator **have not yet been calculated**.
- The **cost estimates** have not yet begun on the RF cavities, power supplies, cryogenic systems, etc.

