

United States Department of Energy

Â

ENTRANCE

Project Status

CNM and Hard X-ray Nanoprobe Beamline

Jörg Maser

Advanced Photon Source Center for Nanoscale Materials Argonne National Laboratory

CNM/Nanoprobe beamline

CNM Scientific Themes

Novel functional nanocomposites

- Bio-Inorganic Interface (*D. Tiede, T. Rajh, M. Firestone*)
- Nanocarbon
- Nanomagnetism
- Complex Oxides
- Nanophotonics
- Virtual Fab Lab
- Lithography
- X-Ray Nanoprobe

- (D. Gruen, J. Carlisle)
- (S. Bader, A. Hoffmann)
- (O. Auciello, S. Streiffer)
- (G. Wiederrecht, S. Gray)
- (S. Gray, P. Zapol)
- (L. Ocola, D. Mancini)
- (J. Maser, B. Stephenson)

Sub-wavelength photon confinement/propagation

Fabrication and Characterization Tools in CNM

FIB/SEM

State-of-the-art nanofabrication and characterization tools require highly engineered specialized environments:

- FIB/SEM
- E-beam lithography (25 kV, 100 kV systems)
- Confocal laser scanning Microscope
- SEM/Scanning probe microscopy

Equipment Cost/Schedule

Hard X-ray Nanoprobe

- **Overall specifications:**
 - Energy range: 3 30 keV
 - Excitation of most elements
 - Spatial resolution: δ = 30 nm
 - Limited by x-ray optics.
 - Tomographic transmission imaging.
 - Full nano-spectroscopy capability
 - Near-edge spectroscopy. •
 - **Diffraction-contrast Imaging**

Courtesy J. Susini, ESRF

Gourtesy T. Paunesku, NWU

Pioneering Science and Technology

Courtesy R. Divan, CNM

Why diffractive optics?

X-ray optics	Diffractive Optics	Mirror Optics	Refractive Optics
Numerical aperture	High NA possible (Limit: manufacture)	– Limited NA (θ _c)	Limited NA (D _{eff}) Compton scattering
Efficiency	20% - 30% (60%)	70% - 90%	20% - 30%
Chromaticity	f ~ 1/λ	Non-chromatic	f ~ 1/λ²
Field of view	Υ (δ > 10 nm)	 Kirkpatrick/Baez: N Wolter Y (> 13nm) 	Y
Other (Monochromatic beam On-axis geometry Any x-ray energy 	 White (pink) beam Grazing incidence geometry. Any x-ray energy 	 Monochromatic beam On-axis geometry Long lenses Limited energy range

Diffractive optics allow sub-10 nm resolution (technical challenges)

Hard x-ray Nanoprobe beamline layout

Nanoprobe BL status

 Radiation enclosures and standard components being installed on APS floor

- Major components (zone plates, mirror system, monochromators) being ordered
- Beamline components to be installed by Dec/06
- Nanoprobe instrument design ongoing; installation by Mar/07
- User jumpstart instrument being commissioned

Courtesy R. Winarski

²⁵ First Steps: Hard x-ray nanoprobe instrument

- Requirements:
 - 4-5 nm mechanical resolution,
 - active vibration control
 - μrad resolution for spectral scans
- Approach:
 - Laser Doppler interferometer on reference frame measures *absolute* position of optics, sample.
 - SMALL-RANGE flexures
 + piezo-feedback respond to laser
 interferometer input
 - Fine scan x/y of zone plate

CNM/Nanoprobe - APS/Users Monthly Operations Meeting; Oct. 27, 2004

First system characterization 8-ID-E

27

Conclusion

- CNM project has begun construction
 - Building construction under way
 - Long leadtime equipment (HVEBL system) ordered
 - Hard x-ray Nanoprobe beamline under construction at 26-ID
 - Phase-in of CNM operation: summer, 2006
 - Full operations CNM, Nanoprobe beamline: Fall 2007
 - User startup program accepts proposals:

http://nano.anl.gov

The people involved

• CNM project:

Eric Isaacs, Derrick Mancini, Stephen Streiffer, L. Ocola, K. Hellman

- Nanoprobe beamline project
 - Brian Stephenson, J. Maser, Bob Winarski, M. Holt, Christa Benson, B. Tieman.

• Instrument development:

- Deming Shu, B. Lai, S. Vogt, Curt Preissner, Yufeng Han, Alex Smolyanitskiy.
- Many others:
 - G. Schneider, A. Khounsary, Y. Li, L. Assoufid, M. Ramanathan, Y. Jaski, B. Brajuskovic, E. Rossi.
 - Bill Wesolowski, Kevin Randall, Gary Edgell, Steve Davey, Bruce Stockmeier, Tom Barsz, Jon Hawkins, Greg Markovich, Ann Boron

