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Why did Crystallography Revolutionize Science?

1. Crystallography was the first scientific technique that provided direct
information about molecular structure
– Early work was intuitive: structures assigned based on patterns and

symmetry (some results predate X-rays!)
2. X-ray and neutron diffraction observations can be modeled very

accurately directly when the molecular structure is known
3. Diffraction can provide a very large number of independent observations

– probability of finding an incorrect structure model that is both
plausible and is in good agreement with the diffraction observations
is very small (but not zero!)

4. Computer-assisted least-squares optimization allows structural models
to be improved, limited only by the quality of the data

5. Statistical and brute-force techniques overcomes the incomplete nature
of diffraction observations (direct methods vs. “the phase problem”).

100+ years later, no other technique offers as much
power for learning about molecular structure!
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Crystallographic literacy

∆ The power of crystallography is such that its results are used in almost all
areas of the physical and biological sciences; scientists need to
understand the language of crystallography to utilize the literature.

∆ Rietveld analysis is a sophisticated form of crystallographic modeling that
requires a strong understanding of these concepts

Subsequent sections of this talk will list (but not teach) key fundamental
concepts in crystallography

– My recommendation: be sure that you understand these concepts
before trying to do Rietveld analysis
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Where to go for more…

There are many texts available. My favorites:

X-Ray Structure Determination: A Practical Guide (2nd Ed.),
G. H. Stout, & L. H. Jensen (Wiley, 1989, ~$150) [Focused on
small-molecule single crystal techniques, dated, but very easy to read;
very good explanations of fundamentals. Favorite of many in field, who
started with this book.]

Fundamentals of Crystallography (2nd Ed.),
Carmelo Giacovazzo, et al. (Oxford, 2002,
~$90) [Modern & very comprehensive, quite reasonable
price considering quality, size & scope.]
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The Lattice

∆ Crystals are constructed from repeated arrangements of atoms.
∆ Crystalline structure can be described as set of “identical boxes” stacked

in 3D; the contents of each box is identical (exception: quasicrystals)
– A lattice is a mathematical concept where each lattice point

describes an identical environment; lattice points are the corners of
the “identical boxes.”

Commonly used phrases
such as “lattice compound”
or “interstitials in the lattice”
misuse the concept of a
lattice.
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The Unit Cell

∆ The unit cell describes at least one repeating unit that can be used to
construct the structure

∆ There are 7 types of unit cells corresponding to the 7 crystal systems

Triclinic Orthorhombic   Hexagonal         Cubic 
 Monoclinic    Rhombic     Tetragonal

(Image from http://pasadena.wr.usgs.gov/office/given/geo1/lecturenotes/SevenCrystalSystems.html)
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Lattice Types

∆ Lattice points may also
be placed inside units
cells (body center,
face centers) giving
rise the 14 Bravais
lattices (1848)

(Figure from http://www.chemsoc.org/exemplarchem/entries/2003/bristol_cook/latticetypes.htm)
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Centering is used to increase symmetry

∆ The green (primitive) unit
cell does not demonstrate
two-fold symmetry that can
be seen in the red
(centered) cell
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Symmetry

The construction of a crystal from the unit cell requires repeated translation
of the “building block” in all three directions: lattice symmetry

∆ Additional symmetry is almost always present amongst the atoms inside
a unit cell
– This allows the unit cell (and thus the entire structure) to be built from

just a section of the unit cell
– The minimal section representative of the entire structure is called

the asymmetric unit
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Types of Symmetry

(Images from http://members.tripod.com/~EppE/302rev2.htm)

∆ Types of symmetry elements in crystals
– Lattice translations (includes lattice

centering)
– Mirror planes
– Proper/improper Rotation axes (includes

center of symmetry)
– Screw Axes
– Glide Planes
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∆ There are only 230 unique ways to combine
symmetry elements for a 3D lattice: 230 space
groups

∆ Space groups are tabulated in The International
Tables of Crystallography, Volume A    

Space Groups

∆ Not all combinations of symmetry and lattice types are compatible
– Example: mirror plane perpendicular to a non-orthogonal pair of axes
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For more information on space groups…

∆ I recommend Space Groups for Solid State Scientists by G. Burns and A.
M. Glazer (Academic Press, New York, 1990).
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Fractional coordinates

∆ Atom locations are measured in fractions of
the unit cell edges
– Note atom is at x=0.45,y=0.25

∆ This notation allows for simple description of
symmetry operations:
(x,y,z) --> (1+x, y, z) [translation on x]
(x,y,z) --> (1/2+x, 1/2+y, 1/2+z) [centering]
(x,y,z) --> (-x, -y, -z) [center of symmetry @

origin]
In crystallographic notation x=0.45(3) means that there is a standard
uncertainty of 0.03 on the value for x of 0.45

Equivalently, there is a 95% chance that x is between 0.39 and 0.51 (±2σ)
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Lattice planes

∆ General Indices: lattice planes are indexed by the inverse of where they
cut each axis:
– Intercept of 0.5 → index=2
– Intercept of ∞ (|| to axis) → index=0

∆ Related concept: Miller indices
– used for crystal faces
– Contain no common factors

∆ Notation: [ ] defines a direction
– [100] is along a axis
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Reciprocal Lattice

∆ To simplify math when working with non-orthogonal coordinate systems,
we use a construct called the reciprocal lattice (indicated by star) where
each reciprocal axis is perpendicular to two “real space” axes:
– a* • a = 1; a* • b = 0; a* • c = 0
– b* • a = 0; b* • b = 1; b* • c = 0
– c* • a = 0; c* • b = 0; c* • c = 1

∆ This means that if we have two vectors:

 r = xa + yb + zc    and   d* = ha* + kb* + lc*
Then no cross-terms are needed for the dot product:

 r  • d* = hx + ky + lz
Use of the reciprocal lattice makes computation of the Fourier transform of

the atomic positions straightforward.

Historical note: the value of the reciprocal lattice for working with non-orthogonal
coordinate  systems was first recognized by J. Willard Gibbs (1881)
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Diffraction from single crystals

∆ Diffraction occurs when the reciprocal lattice planes of a crystal are
aligned at an angle θ with respect to the beam and the wavelength of an
incident beam satisfies:

– λ = 2 d sinθ (or better, λ = 4 π sinθ / Q)   [Bragg’s Law]

– d = 1/|d*| = 1/|ha* + kb* + lc*|
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Single Crystal Diffraction Intensities

∆ The Intensity of a diffracted beam, Ihkl is related to a imaginary number
called the structure factor, Fhkl

– Ihkl ∝ |Fhkl|2

∆ The structure factor is determined by summing over all atoms in the
crystal:

– Fhkl ∝ Σ fi exp[2πi(hxi + kyi + lzi)] exp(-UiQ2/2)

Since adding 1 to xi,yi or zi does not change the above this can be
simplified to sum over the atoms of one unit cell

Also, since eiφ = isinφ + cosφ

– Fhkl ∝ Σ fi isin[2π(hxi + kyi + lzi)] exp(-UiQ2/2)

+ Σ fi cos[2π(hxi + kyi + lzi)] exp(-UiQ2/2)

– fi represents the scattering power of an atom
– Ui represents the average displacement of an atom from its ideal site
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Atomic Scattering Power

∆ The scattering power (form
factor, f) of an atom for X-rays
depends on the number of
electrons in the atom and Q

∆ The scattering power (scattering
length, b) of an atom for neutrons
depends on the isotope and is
independent of Q

Q or sinθ/λ, Å-1

20

Comparison of Neutron and X-ray Atomic Scattering
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Centrosymmetric Single Crystal Diffraction Intensities

∆ When all atoms are in pairs where x,y,z and -x,-y,-z (centrosymmetric
with a center of symmetry at the origin)

∆ noting that
– eiφ = i sinφ + cosφ and
– Also cos(-φ) = cosφ while sinφ = -sinφ
– This means eiφ +  e-iφ = 2 cosφ

∆ This allows the simplification:

– Fhkl ∝ Σ fi cos[2π(hxi + kyi + lzi)] exp(-UiQ2/2)

Where now the sum only includes one atom in each pair

For this reason, crystallographic programs always want the center of
symmetry at the origin for centrosymmetric space groups (Origin 2)
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X-ray Structure Factors are the Fourier Transform of the
Electron Density in a Crystal

∆ Electron density: ρ(x,y,z) (probability of finding an electron at location
x,y,z)

ρ(x,y,z) ∝ Σ Fhkl exp [-2πi(hxi + kyi + lzi)]

∆ ρ(x,y,z) and Fhkl are Fourier conjugates:

Fhkl ∝ Σ fi exp[2πi(hxi + kyi + lzi)]exp (-UiQ2/2)

For neutrons ρ(x,y,z) becomes a function of nuclear density weighted by the
scattering lengths of the individual atoms

The Crystallographic Phase problem: we measure |Fhkl|2 and do not know
the phase. This limits our ability to use this relationship
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Single crystal intensities are collected by orienting the
crystal in multiple orientations with a detector to measure
scattered intensities
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How are Single-Crystal data used?

1. Collect |Fhkl| for many reflections
2. Use Direct Methods or a Patterson map to come up with an approximate

structure
3. Use Fourier computations to look for missing atoms.

∆ Fourier uses phases computed from approximate structure
4. Optimize the model by minimizing the differences between the observed

|Fhkl| and values for Fhkl computed from the structural model

Repeat steps 3 & 4 as needed.



Getting Started with Rietveld

Brian H. Toby 7

25

What if two materials are present?

∆ When a sample is composed of two or more crystalline phases the
powder diffraction contains the weighted sum of the diffraction patterns
from each phase

∆ Mixtures can be identified

∆ Peak areas allow amounts of each phase to be quantified
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Diffraction from random polycrystalline material

In a sufficiently large, randomly
oriented polycrystalline
sample (e.g. a powder), there
are a large number of small
crystallites.

A beam impinging on the sample
will find a representative
number of crystallites in the
right orientation for diffraction

IncidentIncident
BeamBeam

DiffractedDiffracted
BeamBeam
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Bragg rings in powder diffraction

∆ Reflections do not occur at all possible locations. Reflections fall on rings
with defined 2θ angles.
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What if we don’t have an infinite number of crystals?

∆ When number of crystals is too
small, the pattern becomes
“grainy” -- diffraction from
individual crystals dominates

∆ Diffraction intensities become
unreliable
– Increase sample size
– Grind the sample to

decrease domain size
– Oscillate or rotate the

sample
• Spinning does not help

much
– Use area detection &

integrate the entire ring.
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What if the crystals do not have random orientation?

If some crystal orientations are over- or under-represented, the intensities of
lines will be increased or decreased
– in extreme cases, classes of lines can disappear

∆ Preferred orientation
– Can be desired for engineering properties
– Occasionally beneficial for structure solution
– Usually problematic for Rietveld & quantitation

30

Avoiding preferred orientation

∆ Grind samples
∆ Use rotating capillaries (synchrotron)

– Bragg-Brentano spinning does not help at all!
∆ Do not smooth flat plate specimens
∆ Consult literature: (~5 decades worth)
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What about “bad crystals”?

∆ Crystals smaller than <<1 µm can show broadening
∆ Twinning: not a problem
∆ Stacking faults: can add intensity in weird ways (see Diffax program)
∆ Poorly ordered materials: intensity falls off quickly (~ like extra-large

Debye-Waller)
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What did people do before Rietveld?

∆ Avoided powder diffraction
∆ Manually integrate intensities

– discard peaks with overlapped reflections
Or
– rewrote single-crystal software to refine using sums of overlapped

reflections

Error propagation was difficult to do correctly (but not impossible)

Computation of powder diffraction data was commonly done; patterns could
be used to verify a model was correct by seeing similarities
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Hugo Rietveld’s technique

∆ Hugo Rietveld realized that if a pattern could be modeled, the fit between
these data and the a computed pattern could be optimized.

– Similar to single-crystal diffraction, except that now “experiment
dependent parameters” must now be fit as well.
• Background
• Peak broadening
• Lattice constants

– Fewer data are available (usually)
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hkl mult d-space Fobs phase

6,5,1 48 1.548 0.29 0

7,3,2 48 1.548 1.709 180

8,0,0 6 1.5236 29.45 0

7,4,1 48 1.5004 2.327 0

8,2,0 24 1.4781 3.703 0

6,5,3 48 1.4569 1.27 0

6,6,0 12 1.4365 0.242 180

8,2,2 24 1.4365 2.086 0

8,3,1 48 1.417 0.22 180

7,4,3 48 1.417 1.827 180

1) Generate reflection list

2) Compute Fhkl from
model

Graphical Rietveld Example

3) Peak heights are
generated from
|Fhkl|2*multiplicity

4) Convolute peaks & add
background

5) Optimize model, peak
widths, etc. to improve
fit

Fhkl phaseD-spacemulthkl
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Hugo Rietveld’s other breakthrough

∆ Based on intensities from the model, estimates for Fhkl can be made,
even when reflections are completely overlapped:

1
Location 1:
20% to A
40% to B
40% to C

2

Location 2:
100% to C
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Rietveld Applications

∆ Crystallographic structure determination

∆ Quantify amounts of crystalline phases

– (Amorphous content too, with neutrons)

∆ Engineering properties

– Residual stress

– Preferred orientation

∆ Lattice constant determination
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What sort of data are needed for Rietveld Analysis?

∆ Must be possible to fit peak shapes
∆ Q range and resolution demands dictated by structural complexity
∆ Data from lab instruments should be used with caution for structure

determination
∆ Neutron data are usually necessary for occupancy determination
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Disadvantage of Rietveld:
Many parameters need to be fit

∆ Background
– fixed
– functions

∆ Peak shape
– “fundamental parameters”
– functions

∆ Lattice constants
– zero correction
– flat plate terms

∆ Scaling
– Phase fractions

∆ Structural parameters
– atom positions
– occupancies
– displacement parameters

∆ Preferential Orientation
∆ Absorption

Powder diffraction offers fewer observations and worse
peak-to-background than single crystal diffraction


