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A Casual Introduction to
Least-squares Fitting:
A [mostly] descriptive approach

Brian H. Toby
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Outline

 Linear Algebra: a cheap intro
 Least-Squares Minimization

– Linear
– Non-linear

 Least-square’s weakness: Correlation
 Uncertainty estimation for fitted parameters
 Resistance: one bad point can do you in
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Linear Algebra: for solution of simultaneous equations

 Linear Algebra provides a compact way to deal with simultaneous equations:

A11x1 + A12x2 + A13x3 + … A1mxm = b1

A21x1 + A22x2 + A23x3 + … A2mxm = b2

An1x1 + An2x2 + An3x3 + … Anmxm = bn

or  equivalently with n equations, Σj Aijxj = bi, where we want to find the xj
values knowing Aij and bi

can be written as A x = b where
• A is a (n by m) matrix;
• b is a column vector(or m by 1 matrix)
• x is a row vector(or 1 by n matrix)

 Solving for x:    A-1A x = A-1b     or   x = A-1b
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Linear Algebra

 Matrix A with m rows and n columns is composed of n×m
elements Aij:

 Matrix multiplication: C = A B, Cij = Σk Aik Bkj

Note that in general, A B ≠  B A,

 Matrix transpose, AT

– if B = AT  then Bij = Aji
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Matrix Inversion

 Identity Matrix:
– diagonal elements = 1
– off-diagonal elements = 0

 Inverse of Matrix: A-1 A = 1

 Inverse of 3x3 matrix
(from wikopedia)
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Summary: Part 1

 You have now had a very brief introduction to linear algebra and should
understand the concept of a matrix
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Singular Matrices

 If any column (or row) in a matrix is repeated, the matrix cannot be inverted.
The same is true if a column (or row) is repeated multiplied by a constant

 A matrix that cannot be inverted is called singular
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Nearly Singular Matrices

 When columns are nearly equivalent, we start subtracting numbers that are
almost equal from each other.

– This is a very bad thing in computer math as it causes round-off errors to be
increased.
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Round-off error example

∞-precision arithmetic:
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Summary: Part 2

 You should now understand that a singular matrix is one that cannot be inverted
 A matrix that is nearly singular in theory can be inverted, but in practice

inversion will be highly inaccurate due to round-off errors
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Terminology of Least-Squares

Data: n observations, yi, measured at independent variable setting xi

Model: a function that predicts the observations: Y(xi,p)
– Linear Model: Y(xi,p) = p1 f1(xi) + p2 f2(xi) + …
– Non-linear Model: Y(xi,p) = f(xi, p1, p2, …)

Parameters: m terms p1, p2, p3… pm that determine the values that are computed
from the model

Refine: Find values for parameters, p, to yield the best fit between the model
Y(xi,p) and observations yi

Best fit: Means the finding the minimum for Σ wi[yi - Y(xi,p)]2

where wi = [1 / σ(yi)]2  (Note: σ is standard uncertainty on yi)
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Linear Least-Squares

Linear Model: Y(xi,p) = p1 f1(xi) + p2 f2(xi) + … = Σk pk fk(xi)

 Goal: Find p1, p2, p3… pm that minimize Σiwi[yi - Y(xi,p)]2

set derivative w/r each parameter to zero: ∂/∂pj Σiwi[yi - Y(xi,p)]2 = 0
Gives m coupled equations: Σiwi yi ∂Y/∂pj = Σiwi Y(xi,p) ∂Y/∂pj

Note that ∂Y/∂pj = fj(xi) so the m coupled equations become:
  Σiwi yi fj(xi)  = Σiwi [Σk pk fk(xi)] fj(xi) = Σk pk Σiwi fk(xi) fj(xi)

Define: Aij = fj(xi) / σ(yi); bi = yi / σ(yi)
This gives m coupled equations: Σi bi Aij = Σk pk Σi Aij Aik

Recast using linear algebra: ATb = ATAp or solving for p:
(ATA)-1ATb = p      This allows the p values to be determined directly
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Non-Linear Least-Squares (Gauss-Newton)

 With a non-linear model, Y(xi,p) = f(xi, p1, p2, …), it is not possible to solve for p
 Remembering the Taylor expansion:

f(xi, p+δ) = f(xi, p) + δ(∂f/∂p) + δ2(∂2f/∂p2)/2 + …
 Multi-parameter Taylor expansion around approximate values for p:

 Y(xi, p1+δ1 , p2+δ2 ,…) = Y(xi, p1, p2,…) +  Σk δk(∂Y/∂pk) + Σk δk
2(∂2Y/∂pk

2)/2 + …
– as before, set ∂/∂pj Σiwi[yi - Y(xi,p)]2 = 0; solve for δk

m coupled equations: Σiwi [yi- Y(xi,p)] (∂Y/∂pj) = Σk δk Σiwi (∂Y/∂pk) (∂Y/∂pj)

Define: Aij = (∂Y(xi,p) /∂pj) / σ(yi);     bi = [yi - Y(xi,p)] / σ(yi)
This gives m coupled equations: Σi bi Aij = Σk δk Σi Aij Aik

Recast using linear algebra: ATb = ATA δ or (ATA)-1ATb = δ

Refinement is iterative process, starting from approximate p values
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More on Least-squares

A is called the Design Matrix: Aij = ∂Y/∂pj / σ(yi)
 H = ATA is called the Hessian Matrix
 The inverse of the Hessian, H-1 = (ATA)-1, is called the Covariance Matrix

(Einstein called it the Variance-Covariance Matrix)

 The Hessian measures, evaluated for all data points, how the model responds
to changes in parameters :

– Hij = Σk (∂Y/∂pi) (∂Y/∂pj) / σ(yk)

14

Summary: Part 3

You should now understand
 the difference between linear and non-linear least squares
 why non-linear least squares is iterative and requires starting with approximate

values for parameters
 how LS refinement uses weights, differences and depends of the derivatives of

w/r to parameters
 commonly used terms: covariance matrix, Hessian matrix

15

Correlation:

 If two (or more) parameters have the same effect on the model, the
derivatives are the same and the Hessian is singular

 If two (or more) parameters have very similar effects, the derivatives
are nearly the same and the Hessian is nearly singular -- round-off
dominates!

When parameters have similar effects on the fit they are said to be
correlated
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Correlation: the Achilles' Heel of Least-Squares

 Least-squares works best with parameters that have very different effects on the
model

 If parameters have exactly the same effect on the model (are completely
correlated), the p values cannot be determined

 Least-squares performs poorly when pi values have similar effects (are
correlated.)

So why use Least-Squares?
– If σ(yi) accurately describes the estimated error (standard uncertainty) in yi

and the model produces an ideal fit to the data (χ2≅1) then the diagonal
elements of the covariance matrix give the standard uncertainty in the
parameters: (ATA)-1

jj = σ(pj)
– Least-squares makes optimum use of data -- giving the result with the

smallest possible statistically uncertainty.
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Correlation: Example 1

Note that m and n have almost exactly the same effect
The least-squares refinement will be prone to diverge!

Fit  y = nsin(x) + mx + b (all x << π/2)

 y = mx + b  y = nsin(x) + b

In order to fit both m and n well: data over a wide range in x or
extremely precise data are needed
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vacancies Uiso increase

Note: with a smaller Q range, these changes would be even harder to
discern

Occupancies and displacement parameters correlate.
Why? Decreasing occupancy has a similar effect to increasing Uiso.

Correlation: Example 2

 Example: Simulate change in NaCl X-ray diffraction due to 20% Na vacancies or
due to a ×2.8 increase in Na Uiso.
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vacancies Uiso increase

Correlation: Neutrons vs. X-rays

Same example: NaCl with 20% Na vacancies or ×2.8 increase in Na Uiso but now
simulated with neutron diffraction (can discern much better)
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Correlation: Example 3

Fit  y = mx + b + c

Note: b & c are completely
equivalent

Since the effect of changing b & c is exactly the same, the Hessian
matrix cannot be inverted (is singular).

GSAS treats a singular Hessian by ignoring one of the two identical
variables.
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Exact correlation: Crystallographic Examples

 When symmetry is lowered, there will be complete correlation
between:
– [Formerly] equivalent unit cell constants
– Sets of  [formerly] equivalent atoms
– Either manually change the parameters to break the

equivalence or vary only one of the set to start.
 Vacancies are equivalent to partial substitution by a “lighter” atom
 Refining all atom positions in space groups with only translational

symmetry (arbitrary origin)
 Complete correlation occurs any time two (or more) parameters

have exactly the same effect on the fit.
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Summary: Part 4

You should now understand
 how exact correlation in parameters leads to a singular Hessian
 why highly correlated parameters leads to a very inaccurate inversion of the

Hessian – possibly causing a refinement to fail.
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Uncertainty estimation for derived parameters

 Statistical error estimates are computed using covariance matrix
– If σ(yi) accurately describes the estimated error (standard uncertainty) in yi

and the model produces an ideal fit to the data (χ2≅1) then the diagonal
elements of the covariance matrix give the standard uncertainty in the
parameters: H-1

jj = [σ(pj)]2

 For functions of fitted parameters, uncertainty also computed:
If s = f p then σ(s) = (H-1)T f H-1

– Used for bond distances & angles (DISAGL)
– Can also be used for total composition (from refined

occupancies, implemented in GEOMETRY)

24

Least-Squares is not Resistant
Least-squares weighting assumes:

– uncertainty estimates on data are accurate
– model is accurate (no systematic errors) ““BadBad”” points skew points skew

refinementsrefinements

Robust-Resistant algorithms limit the maximum leverage a poorly fitting data point may have
(for example, by changing weighting.)
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Final Summary

You have now seen
 the strength of least-squares: error estimates for refined parameters
 that weights need to reflect the actual uncertainty on a observation or “bad data”

can yield a bad fit.

In conclusion:
 Linear algebra simplifies least squares fitting
 Understand how least squares fitting works
 Understand the strengths and weaknesses of least squares


