

A Casual Introduction to Least-squares Fitting: A [mostly] descriptive approach

Brian H. Toby

Linear Algebra: for solution of simultaneous equations

□ Linear Algebra provides a compact way to deal with simultaneous equations:

$$\begin{aligned} &A_{11}x_1 + A_{12}x_2 + A_{13}x_3 + \dots A_{1m}x_m = b_1 \\ &A_{21}x_1 + A_{22}x_2 + A_{23}x_3 + \dots A_{2m}x_m = b_2 \\ &A_{n1}x_1 + A_{n2}x_2 + A_{n3}x_3 + \dots A_{nm}x_m = b_n \end{aligned}$$

or equivalently with *n* equations, $\Sigma_i A_{ii} x_i = b_i$, where we want to find the x_i values knowing A_{ii} and b_i

can be written as $\mathbf{A} \mathbf{x} = \mathbf{b}$ where

- A is a (n by m) matrix;
- **b** is a column vector(or m by 1 matrix)
- x is a row vector(or 1 by n matrix)
- One Solving for \mathbf{x} : $\mathbf{A}^{-1}\mathbf{A} \mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$ or $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$

Outline

- Linear Algebra: a cheap intro
- Least-Squares Minimization
 - Linear
 - Non-linear
- □ Least-square's weakness: Correlation
- Uncertainty estimation for fitted parameters
- Resistance: one bad point can do you in

Linear Algebra

- $\mathbf{A} = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{m1} \\ A_{12} & A_{22} & \dots & A_{m2} \\ \dots & & & & \\ A_{1n} & A_{2n} & \dots & A_{mn} \end{pmatrix}$ □ Matrix **A** with m rows and n columns is composed of $n \times m$ elements Aii:
- Matrix multiplication: $\mathbf{C} = \mathbf{A} \mathbf{B}, C_{ij} = \sum_{k} A_{ik} B_{kj}$ Note that in general, $\mathbf{A} \mathbf{B} \neq \mathbf{B} \mathbf{A}$,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \begin{pmatrix} a\alpha + b\gamma & a\beta + b\delta \\ c\alpha + d\gamma & c\beta + d\delta \end{pmatrix}$$

Matrix transpose, \mathbf{A}^{T} $- if \mathbf{B} = \mathbf{A}^{T} then \mathbf{B}_{ij} = \mathbf{A}_{ji}$ $\mathbf{A} = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \end{pmatrix} \qquad \mathbf{A}^{T} = \mathbf{B} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{pmatrix}$

Matrix Inversion

- Identity Matrix:

 diagonal elements = 1

 off-diagonal elements = 0 $\mathbf{1} = \begin{bmatrix}
 1 & 0 & \dots & 0 \\
 0 & 1 & \dots & 0 \\
 \vdots & \ddots & \vdots \\
 0 & 0 & \dots & 1
 \end{bmatrix}$
- Inverse of Matrix: $\mathbf{A}^{-1} \mathbf{A} = \mathbf{1}$ $\mathbf{A}^{-1} \mathbf{A} = \begin{pmatrix} A_{11}^{-1} & A_{12}^{-1} & A_{13}^{-1} \\ A_{21}^{-1} & A_{22}^{-1} & A_{23}^{-1} \\ A_{31}^{-1} & A_{32}^{-1} & A_{33}^{-1} \end{pmatrix} \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix}$
- $\mathbf{A}^{-1} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}^{-1} = \frac{1}{|A|} \begin{bmatrix} ei fh & ch bi & bf ce \\ fg di & ai cg & cd af \\ dh eg & bg ah & ae bd \end{bmatrix}$ □ Inverse of 3x3 matrix (from wikopedia)

|A| = a(ei - fh) - b(di - fg) + c(dh - eg)

Singular Matrices

- □ If any column (or row) in a matrix is repeated, the matrix cannot be inverted. The same is true if a column (or row) is repeated multiplied by a constant
- □ A matrix that cannot be inverted is called singular

$$\mathbf{A} = \begin{pmatrix} a \\ d \\ g \end{pmatrix} \begin{pmatrix} b \\ nd \\ ng \end{pmatrix}^{-1} \qquad |\mathbf{A}| = \begin{vmatrix} a & b & na \\ d & e & nd \\ g & h & ng \end{vmatrix} = a(eng - ngh) - b(dng - ngg) + ng(dh - eg) = 0$$

$$A^{-1} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}^{-1} = \underbrace{\begin{bmatrix} ei-fh & ch-bi & bf-ce \\ fg-di & ai-cg & cd-af \\ dh-eg & bg-ah & ae-bd \end{bmatrix}}_{|A| = a(ei-fh) - b(di-fg) + c(dh-eg)}$$

Summary: Part 1

 You have now had a very brief introduction to linear algebra and should understand the concept of a matrix

Nearly Singular Matrices

- □ When columns are nearly equivalent, we start subtracting numbers that are almost equal from each other.
 - This is a very bad thing in computer math as it causes round-off errors to be increased.

Round-off error example

$$\infty$$
-precision arithmetic: $64\left(\frac{1}{8}\right)\left(\frac{1}{8}\right) - 1 = 0$

Repeat with two significant-figures: 64(0.13)(0.13) - 1 = 64(0.017) - 1 = 1.1 - 1 = 0.1

$$\mathbf{A} = \begin{pmatrix} a & b & na \\ d & e & nd \\ g & h & n(g+\delta) \end{pmatrix}^{-1} \qquad |\mathbf{A}| = \underbrace{a(en[g+\delta] - ndh)}_{} - \underbrace{b(dn[g+\delta] - ndg)}_{} + na(dh - \underline{eg})$$

Summary: Part 2

- You should now understand that a singular matrix is one that cannot be inverted
- A matrix that is nearly singular in theory can be inverted, but in practice inversion will be highly inaccurate due to round-off errors

Linear Least-Squares

Linear Model: $Y(x_i, \mathbf{p}) = p_1 f_1(x_i) + p_2 f_2(x_i) + ... = \sum_k p_k f_k(x_i)$

□ Goal: Find p_1 , p_2 , p_3 ... p_m that minimize $\Sigma_i \mathbf{w}_i [\mathbf{y}_i - \mathbf{Y}(x_i, \mathbf{p})]^2$ set derivative w/r each parameter to zero: $\partial/\partial p_j \Sigma_i \mathbf{w}_i [\mathbf{y}_i - \mathbf{Y}(x_i, \mathbf{p})]^2 = 0$ Gives m coupled equations: $\Sigma_i \mathbf{w}_i \mathbf{y}_i \partial \mathbf{Y}/\partial p_i = \Sigma_i \mathbf{w}_i \mathbf{Y}(x_i, \mathbf{p}) \partial \mathbf{Y}/\partial p_i$

Note that $\partial Y/\partial p_j = f_j(x_i)$ so the *m* coupled equations become: $\Sigma_i w_i y_i f_i(x_i) = \Sigma_i w_i [\Sigma_k p_k f_k(x_i)] f_i(x_i) = \Sigma_k p_k \Sigma_i w_i f_k(x_i) f_i(x_i)$

Define: $A_{ij} = f_i(x_i) / \sigma(y_i)$; $b_i = y_i / \sigma(y_i)$

This gives *m* coupled equations: $\Sigma_i b_i A_{ii} = \Sigma_k p_k \Sigma_i A_{ii} A_{ik}$

Recast using linear algebra: $\mathbf{A}^T\mathbf{b} = \mathbf{A}^T\mathbf{A}\mathbf{p}$ or solving for \mathbf{p} : $(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{b} = \mathbf{p}$ This allows the \mathbf{p} values to be determined directly

11

Terminology of Least-Squares

Data: n observations, y_i , measured at independent variable setting x_i

Model: a function that predicts the observations: $Y(x_p, \mathbf{p})$

- Linear Model: $Y(x_i, \mathbf{p}) = p_1 f_1(x_i) + p_2 f_2(x_i) + \dots$
- Non-linear Model: $Y(x_i, \mathbf{p}) = f(x_i, p_1, p_2, ...)$

Parameters: m terms $p_1, p_2, p_3 \dots p_m$ that determine the values that are computed from the model

Refine: Find values for parameters, \mathbf{p} , to yield the <u>best fit</u> between the model $Y(x, \mathbf{p})$ and observations y:

Best fit: Means the finding the minimum for Σ $w_i[y_i - Y(x_p p)]^2$ where $w_i = [1 / \sigma(y_i)]^2$ (Note: σ is standard uncertainty on y_i)

10

Non-Linear Least-Squares (Gauss-Newton)

- □ With a non-linear model, $Y(x_p, \mathbf{p}) = f(x_p, p_1, p_2, ...)$, it is not possible to solve for \mathbf{p}
- Remembering the Taylor expansion: $f(x_0, p+\delta) = f(x_0, p) + \delta(\partial f/\partial p) + \delta^2(\partial^2 f/\partial p^2)/2 + \dots$
- □ Multi-parameter Taylor expansion around approximate values for **p**:

$$Y(x_i, p_1 + \delta_1, p_2 + \delta_2,...) = Y(x_i, p_1, p_2,...) + \sum_k \delta_k (\partial Y/\partial p_k) + \sum_k \delta_k^2 (\partial^2 Y/\partial p_k^2)/2 + ...$$

- as before, set $\partial/\partial p_i \Sigma_i w_i [y_i - Y(x_i, \mathbf{p})]^2 = 0$; solve for δ_k

m coupled equations: $\Sigma_i \mathbf{w}_i [\mathbf{y}_i - \mathbf{Y}(\mathbf{x}_i, \mathbf{p})] (\partial \mathbf{Y}/\partial \mathbf{p}_i) = \Sigma_k \delta_k \Sigma_i \mathbf{w}_i (\partial \mathbf{Y}/\partial \mathbf{p}_k) (\partial \mathbf{Y}/\partial \mathbf{p}_i)$

Define: $A_{ij} = (\partial Y(x_i, \mathbf{p}) / \partial p_j) / \sigma(y_i); \quad b_i = [y_i - Y(x_i, \mathbf{p})] / \sigma(y_i)$

This gives m coupled equations: $\Sigma_i b_i A_{ii} = \Sigma_k \delta_k \Sigma_i A_{ii} A_{ik}$

Recast using linear algebra: $\mathbf{A}^T\mathbf{b} = \mathbf{A}^T\mathbf{A} \delta$ or $(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{b} = \delta$

Refinement is iterative process, starting from approximate **p** values

More on Least-squares

A is called the **Design Matrix**: $A_{ii} = \partial Y/\partial p_i / \sigma(y_i)$

- \blacksquare **H** = **A**^T**A** is called the **Hessian Matrix**
- □ The inverse of the Hessian, H-¹ = (A^TA)-¹, is called the Covariance Matrix (Einstein called it the Variance-Covariance Matrix)
- The Hessian measures, evaluated for all data points, how the model responds to changes in parameters:
 - $\quad H_{ij} = \Sigma_k \left(\partial Y / \partial p_i \right) \left(\partial Y / \partial p_j \right) / \left. \sigma(y_k) \right.$

13

Correlation:

- □ If two (or more) parameters have the same effect on the model, the derivatives are the same and the Hessian is singular
- ☐ If two (or more) parameters have very similar effects, the derivatives are nearly the same and the Hessian is nearly singular -- round-off dominates!

When parameters have similar effects on the fit they are said to be correlated

15

Summary: Part 3

You should now understand

- the difference between linear and non-linear least squares
- why non-linear least squares is iterative and requires starting with approximate values for parameters
- how LS refinement uses weights, differences and depends of the derivatives of w/r to parameters
- ocommonly used terms: covariance matrix, Hessian matrix

14

Correlation: the Achilles' Heel of Least-Squares

- Least-squares works best with parameters that have very different effects on the model
- ☐ If parameters have exactly the same effect on the model (are completely correlated), the **p** values cannot be determined
- Least-squares performs poorly when p_i values have similar effects (are correlated.)

So why use Least-Squares?

- If $\sigma(y_i)$ accurately describes the estimated error (standard uncertainty) in y_i and the model produces an ideal fit to the data $(\chi^2 \cong 1)$ then the diagonal elements of the covariance matrix give the standard uncertainty in the parameters: $(A^TA)^{-1}_{ii} = \sigma(p_i)$
- Least-squares makes optimum use of data -- giving the result with the smallest possible statistically uncertainty.

Exact correlation: Crystallographic Examples

- When symmetry is lowered, there will be complete correlation between:
 - [Formerly] equivalent unit cell constants
 - Sets of [formerly] equivalent atoms
 - Either manually change the parameters to break the equivalence or vary only one of the set to start.
- □ Vacancies are equivalent to partial substitution by a "lighter" atom
- Refining all atom positions in space groups with only translational symmetry (arbitrary origin)
- Complete correlation occurs any time two (or more) parameters have exactly the same effect on the fit.

21

Uncertainty estimation for derived parameters

- Statistical error estimates are computed using covariance matrix
 - If $\sigma(y_i)$ accurately describes the estimated error (standard uncertainty) in y_i and the model produces an ideal fit to the data $(\chi^2 \cong 1)$ then the diagonal elements of the covariance matrix give the standard uncertainty in the parameters: $\mathbf{H}^{-1}_{ii} = [\sigma(p_i)]^2$
- □ For functions of fitted parameters, uncertainty also computed:

If
$$\mathbf{s} = \mathbf{f} \mathbf{p}$$
 then $\sigma(\mathbf{s}) = (\mathbf{H}^{-1})^T \mathbf{f} \mathbf{H}^{-1}$

- Used for bond distances & angles (DISAGL)
- Can also be used for total composition (from refined occupancies, implemented in GEOMETRY)

23

Summary: Part 4

You should now understand

- how exact correlation in parameters leads to a singular Hessian
- why highly correlated parameters leads to a very inaccurate inversion of the Hessian – possibly causing a refinement to fail.

22

Least-Squares is not Resistant

Least-squares weighting assumes:

- uncertainty estimates on data are accurate
- model is accurate (no systematic errors)

"Bad" points skew refinements

Robust-Resistant algorithms limit the maximum leverage a poorly fitting data point may have (for example, by changing weighting.)

Final Summary

You have now seen

- the strength of least-squares: error estimates for refined parameters
- that weights need to reflect the actual uncertainty on a observation or "bad data" can yield a bad fit.

In conclusion:

- Linear algebra simplifies least squares fitting
- Understand how least squares fitting works
- Understand the strengths and weaknesses of least squares

