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Linear Algebra: for solution of simultaneous equations

0 Linear Algebra provides a compact way to deal with simultaneous equations:

ApXp AR AR+ L ALK, = b,
AgiXy AKXy + AgXs + o Ay X = by
AgXp T AKX H A L AL X, = by

or equivalently with n equations, %; A;x; = b;, where we want to find the x;
values knowing A and b;

can be written as A x = b where
* Ais a (n by m) matrix;
* b is a column vector(or m by 1 matrix)

* X is a row vector(or 1 by n matrix)

0 Solving forx: A'Ax=A'b or x=A'b

Outline

0 Linear Algebra: a cheap intro
0 Least-Squares Minimization
— Linear
— Non-linear
0 Least-square’s weakness: Correlation
0 Uncertainty estimation for fitted parameters

0 Resistance: one bad point can do you in

Linear Algebra

0 Matrix A with m rows and »n columns is composed of nxm Ay Ay Ay
clements A A= Ay Ay A
0 Matrix multiplication: C=A B, C; = 2 A, By A, A, .. A,
Note that in general, AB# B A,
a b\a B\ [(aa+by af+bd
c d\y o ca+dy cf+do
A A A All AIZ
0 Matrix transpose, A7 A =( o “) A"=B=|4A, A,
~ ifB=AT then B, = A, Ay Ay Ay A, A,




Matrix Inversion

0 Identity Matrix: 1o .0
diagonal elements = 1 1= 01 .0
off-diagonal elements = 0
0 0 1
A;ll A;ZI Algl Al 1 AZ 1 A3 1 1 O
0 Inverse of Matrix: A A =1 A'A = A;,‘ A;zl A; A, A, A,|=]|0 1
A;l‘ A;ZI A;ll A3l A32 A33 0 O

b ¢ 1 ei—fh ch—bi bf—ce
e f = fg—di ai—cg cd—af
h “''|dh —eg bg —ah ae—bd
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o Inverse of 3x3 matrix

(from wikopedia)

|A| = a(ei — fh) — b(di — fg) + c(dh — eg)

- O O

Singular Matrices

o Ifany column (or row) in a matrix is repeated, the matrix cannot be inverted.
The same is true if a column (or row) is repeated multiplied by a constant
0O A matrix that cannot be inverted is called singular

(a\ b - a b na
A=|d|e Al =ld e nd=a(7{—7f)‘-b(7é‘-?é)‘+r7(4:7d=o
gl h g h ng
a b ]t 1 ei—fh ch—bi bf—ce
At=|d e f = fg—di ai—cg cd—af
g h i dh —eg bg —ah ae—bd

|A| = a(ei — fh) — b(di — fg) + c(dh — eg)

Summary: Part 1

0 You have now had a very brief introduction to linear algebra and should
understand the concept of a matrix

Nearly Singular Matrices

0 When columns are nearly equivalent, we start subtracting numbers that are
almost equal from each other.

This is a very bad thing in computer math as it causes round-off errors to be
increased.

Round-off error example

oo-precision arithmetic: 64(%)(1) -1=0

Repeat with two significant-figures: 64(0,13)((),13) 1= 64(0‘017) -1=1.1-1=0.1

‘A‘ = a(en[g + 9] y()'— b(dn[g + 6]- ndg) +nMig)

-1

a b na
A=|d e nd
g h n(g+9)




Summary: Part 2

0 You should now understand that a singular matrix is one that cannot be inverted

0O A matrix that is nearly singular in theory can be inverted, but in practice
inversion will be highly inaccurate due to round-off errors

Terminology of Least-Squares

Data: n observations, y,, measured at independent variable setting x;

Model: a function that predicts the observations: Y(x;,p)
— Linear Model: Y(x,,p) =p, fi(x,) + p, 1(x) + ...
— Non-linear Model: Y(x,,p) =f(x,, p;, P>, -..)

Parameters: m terms p, p,, p;... p,, that determine the values that are computed
from the model

Refine: Find values for parameters, p, to yield the best fit between the model
Y (x;,p) and observations y;

Best fit: Means the finding the minimum for 2 w;[y; - Y(x,p)]?

where w; = [1/ o(y;)]* (Note: o is standard uncertainty on y,)

Linear Least-Squares

Linear Model: Y(x;,p) = p, fi(x)) + p, /o(x) * ... = Z, py fi(x)
0 Goal: Find p,, p,, p;... p,, that minimize Z,w[y; - Y(x,.p)J?
set derivative w/r each parameter to zero: d/dp; Z;w;[y; - Y(x,.p)*=0
Gives m coupled equations: Z;w;y; dY/dp, = Zw; Y (x,,p) 9Y/dp;
Note that 9Y/dp; = f{(x,) so the m coupled equations become:
Zw, Y i) = Zw; [E o [l f(x) = 2y oy Zw () f(x)
Define: A;; = £(x)) / o(y;); b;=y;/ o(y;)
This gives m coupled equations: Z; b, A; = 2, p, Z; A Ay

Recast using linear algebra: AT = ATAp or solving for p:

(ATA)Y'A™b =p  This allows the p values to be determined directly

Non-Linear Least-Squares (Gauss-Newton)

0 With a non-linear model, Y(x,,p) = f(x,, p;, P,, --.), it is not possible to solve for p
0 Remembering the Taylor expansion:
S, ptd) = flx;, p) + 8(3f70p) + OXY/apP)/2 + ...
0 Multi-parameter Taylor expansion around approximate values for p:
Y, pt0y, ptdy,..) =Y (X, Prs Pys-n) + B 8(0Y/0p,) + 2, 8, 2(97Y/0p 22 + ...
— as before, set 3/dp; Z;w;[y; - Y(x,,p)]* = 0; solve for 8,

m coupled equations: Z,w; [y;- Y(x,,p)] (Y/dp;) = 2, 8, Zw; (9Y/dp,) (9Y/dp;)

Define: Aj = (9Y(x,,p) /op)) / o(y));  bi=[y; - Y(x,,p)] / o(y;)
This gives m coupled equations: X; b, A; = 2, 8, %, A Ay
Recast using linear algebra: A™b = ATA § or (ATA)'ATb =§

Refinement is iterative process. starting from approximate p values




More on Least-squares

A is called the Design Matrix: A; = dY/dp; / o(y;)
0 H=ATA is called the Hessian Matrix
a The inverse of the Hessian, H' = (ATA)"\, is called the Covariance Matrix

(Einstein called it the Variance-Covariance Matrix)

0 The Hessian measures, evaluated for all data points, how the model responds

to changes in parameters :
~ Hy =%, (aY/op) (aY/op) / oly;)

Correlation:

o If two (or more) parameters have the same effect on the model, the
derivatives are the same and the Hessian is singular

o If two (or more) parameters have very similar effects, the derivatives
are nearly the same and the Hessian is nearly singular -- round-off
dominates!

When parameters have similar effects on the fit they are said to be
correlated

Summary: Part 3

You should now understand
0 the difference between linear and non-linear least squares

0 why non-linear least squares is iterative and requires starting with approximate
values for parameters

0 how LS refinement uses weights, differences and depends of the derivatives of
Ww/r to parameters

0 commonly used terms: covariance matrix, Hessian matrix

Correlation: the Achilles' Heel of Least-Squares

0 Least-squares works best with parameters that have very different effects on the
model

o

If parameters have exactly the same effect on the model (are completely

correlated), the p values cannot be determined

0 Least-squares performs poorly when p; values have similar effects (are
correlated.)

So why use Least-Squares?

If o(y;) accurately describes the estimated error (standard uncertainty) in y;

and the model produces an ideal fit to the data (y?=1) then the diagonal

elements of the covariance matrix give the standard uncertainty in the

parameters: (ATA)"!; = o(p;)

— Least-squares makes optimum use of data -- giving the result with the
smallest possible statistically uncertainty.




Correlation: Example 2
Correlation: Example 1
Occupancies and displacement parameters correlate.
14 -
Fit y= ﬂsin(x) +mx+b (all X << /2) °? Why? Decreasing occupancy has a similar effect to increasing U,
\4

0 Example: Simulate change in NaCl X-ray diffraction due to 20% Na vacancies or

9. A4 ] v due to a x2.8 increase in Na Uiso.
o Y- :
----- P x %
----- - acancies U,,, increase
’____ ) 9" 9 o vacancies o iso INCTEase
x X
y = mx + l_) y= QSIH(X) + b gmnun §‘mo
E 20000 x E 20000
Note that 72 and n have almost exactly the same effect & R 5 T . g
. . 0 s
The least-squares refinement will be prone to diverge! ‘ i . . ——
. T
y ¥ ZID 4IU

2Theta

Theta

In order to fit both m and n well: data over a wide range in x or
extremely precise data are needed

Note: with a smaller Q range, these changes would be even harder to
discern

Correlation: Neutrons vs. X-rays Correlation: Example 3

Same example: NaCl with 20% Na vacancies or x2.8 increase in Na Uiso but now
simulated with neutron diffraction (can discern much better .
( ) Fit y=mx+b+c
' '
v
% @ v Note: b & ¢ are completely
¥ ¥ vacancies U, incrcagc M equival@nt
6000 § x
5000
X

4000

: X £
5 2
: : %

2000 ;

% Since the effect of changing b & c is exactly the same, the Hessian
matrix cannot be inverted (is singular).

GSAS treats a singular Hessian by ignoring one of the two identical
variables.




Exact correlation: Crystallographic Examples

0 When symmetry is lowered, there will be complete correlation
between:

— [Formerly] equivalent unit cell constants
— Sets of [formerly] equivalent atoms

— Either manually change the parameters to break the
equivalence or vary only one of the set to start.

0 Vacancies are equivalent to partial substitution by a “lighter” atom

0 Refining all atom positions in space groups with only translational
symmetry (arbitrary origin)

o Complete correlation occurs any time two (or more) parameters
have exactly the same effect on the fit.

Summary: Part 4

You should now understand
0 how exact correlation in parameters leads to a singular Hessian

0 why highly correlated parameters leads to a very inaccurate inversion of the
Hessian — possibly causing a refinement to fail.

Uncertainty estimation for derived parameters

o Statistical error estimates are computed using covariance matrix
If o(y;) accurately describes the estimated error (standard uncertainty) in y;
and the model produces an ideal fit to the data (yx2=1) then the diagonal
elements of the covariance matrix give the standard uncertainty in the
parameters: H'!}; = [o(p;)]2

o For functions of fitted parameters, uncertainty also computed:

If s = f p then o(s) = (H!)” f H!
— Used for bond distances & angles (DISAGL)
— Can also be used for total composition (from refined
occupancies, implemented in GEOMETRY)

Least-Squares is not Resistant

Least-squares weighting assumes:
uncertainty estimates on data are accurate

model is accurate (no systematic errors) “Bad ”pointv skew

refinements
k GOF =0.773 +
ckground = 1.2(4) to 1.1(5) + GOF = 5675
FWHM = 0.492(8) eta = 0.00(4) /] Background = 2(1) to 2(1)
1@137.036(4), area =\7545Lﬂ) «7 =0.52(2) eta = 0.00(13)
+ . Peagf @|37.433(11), area = 2244(153)
— e
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Robust-Resistant algorithms limit the maximum leverage a poorly fitting data point may have
(for example, by changing weighting.)




Final Summary

You have now seen
0 the strength of least-squares: error estimates for refined parameters

0 that weights need to reflect the actual uncertainty on a observation or “bad data”
can yield a bad fit.

In conclusion:
0 Linear algebra simplifies least squares fitting

0 Understand how least squares fitting works

0 Understand the strengths and weaknesses of least squares




