

Outline

This talk covers topics important for Rietveld analysis, particularly of inorganic materials, and assumes knowledge of symmetry operations and space groups, as covered in any crystallography textbook.

- Space group naming
 - Nomenclature
- Common tripping hazards
 - Rhombohedral vs. hexagonal settings
 - Origin 1 vs. Origin 2
 - Inputting space groups to GSAS
- Phase transformations
 - Terminology & relation to symmetry
 - Subgroups & Supergroups
 - Systematic absences

Argonne

Rhombohedral Symmetry: Hexagonal vs. Rhombohedral Unit Cells

- A rhombohedral unit cell can be expanded into a hexagonal unit cell with a tripled volume
 - (111) direction in rhombohedral cell becomes (001) direction in hexagonal cell
 - Hexagonal setting has three times as many symmetry operations
- Rhombohedral setting is usually simpler to specify & understand
 - but as $\alpha{>>}90^{\circ}$ (or $\alpha{<}90^{\circ}{)}$ correlation between axes increases
 - refinement using hexagonal cell is usually more stable
- For rhombohedral space groups: be sure to use symmetry operations for correct cell type
 - R3x space groups only (P3x and P6x are hexagonal only)

Space groups with two origin settings

Orthorhombic		I etragonal		
_	Pnnn (#48)	-1/4 -1/4 -1/4	 – P4/n (#85) 	1⁄4 -1⁄4 0
_	Pban (#50)	-1/4 -1/4 0	– P4 ₂ /n (#86)	1/4 1/4 1/4
_	Pmmn (#59)	-1/4 -1/4 0	- /4 ₁ / a (#88)	0 1/4 1/8
_	Ccca (#68)	0 -1/4 -1/4	 P4/nbm (#125) 	1⁄4 1⁄4 0
_	Eddd (#70)	16 16 16	 – P4/nnc (#126) 	1/4 1/4 1/4
		/6 /6 /6	- P4/nmm (#129)	1⁄4 -1⁄4 0
- 000	Pn-3 (#201)	1/4 1/4 1/4	- P4/ncc (#130)	1⁄4 -1⁄4 0
_	Fd-3 (#203)	16 16 16	 P42/nbc (#133) 	1/4 -1/4 1/4
_	Pn-3n (#200)	1/4 1/4 1/4	- P4 ₂ /nnm (#134)	1/4 -1/4 1/4
	$Pn_3m(#222)$	1/. 1/. 1/.	- P4 ₂ /nmc (#137)	1/4 -1/4 1/4
	Ed_3m (#227)	16 16 16	- P4 ₂ /ncm (#138)	1/4 -1/4 1/4
	Ed-3c (#228)	36 36 36	- I4,/amd (#141)	0 -1/4 1/8
_	1 4-50 (#220)	/0 /0 /0	- I4 1/acd (#142)	0 -1/4 1/8

Add this shift to coordinates to convert from origin 1 to origin 2 EXPGUI can do this in the **xform atoms** window

rgonne

- Diffusional vs. Diffusionless Transitions:
 - Some phase changes require major reorganization of the atomic structure, such as freezing of a liquid to a crystalline solid or conversion of diamond to graphite. These phase changes are called diffusional as atoms must diffuse to form the lattice to complete the phase change
 - Most solid-to-solid phase changes occur with reorganization of _ symmetry but without major changes local changes in atomic arrangement greater than bonding distances: diffusionless transitions
- First vs. Second Order Transitions

Generators selected (1): t(1,0,0): t(0,1,0): t(0,0,1): (2): (3)

Coordinates

Along [100] p 2gg $\mathbf{a}' = \mathbf{b}$ $\mathbf{b}' = \mathbf{c}_p$ Origin at x, 0, 0

CONTINUED

Positions

Wyckoff letter Site symmetry

 $2 \quad d \quad \overline{1} \quad \downarrow, 0, \downarrow \quad \downarrow, \downarrow, 0$

2 c 1 0.0.+ 0.+.0

2 b $\bar{1}$ $\frac{1}{2}, 0, 0$ $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ 2 a $\bar{1}$ 0,0,0 0, $\frac{1}{2}$, $\frac{1}{2}$

Symmetry of special projections

Maximal non-isomorphic subgroups

1: 3

Along [001] p 2gm $\mathbf{a}' = \mathbf{a}, \quad \mathbf{b}' = \mathbf{b}$ Origin at 0, 0, z

 $[2] P \bar{1} (2)$

IIa none IIb none

I

Argonne

- A first order transition is accompanied by release or absorption of energy (heat). The two phases co-exist for some period
- In a second order transition the structure undergoes a continuous change. No energy is absorbed or released
- Landau theory relates transition order to changes in symmetry

		13

Symmetry transformations: Subcells & Supercells

- Most phase transformations between crystalline phases are diffusionless transitions. Diffusionless transitions have only straightforward changes in symmetry: e.g. symmetry operations are gained or lost
 - Note: symmetry changes may cause a change in unit cell type
 - Example: loss of 4-fold axis reduces tetragonal to orthorhombic (or monoclinic)
- Removal (or addition) of symmetry to a space group can only occur in specific ways that are classified in the International Tables vol. A (or A1)
 - Subgroups: removal of symmetry elements
 - Three types of subgroups:
 - I: no change in centering
 - IIa: loss of centering
 - IIb & IIc: cell expansion
 - Supergroups: imposition of additional symmetry
- Reference on subgroup-supergroup relationships: Burns & Glazer, Space Groups for Solid State Scientists (Academic Press, NY, 1990).

rgonne

