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Abstract—We describe a software library, called MPIFCCD,
based on the Message Passing Interface (MPI) for real-time
parallel computing on data continuously streamed from the
Frame Store Fast Charge-Coupled Device (FSFCCD) Detector
located at the Advanced Photon Source (APS) at Argonne
National Laboratory. The FSFCCD is used to collect data for
X-ray Photon Correlation Spectroscopy (XPCS) experiments
at Sector 8-ID at APS. MPIFCCD is integrated into another
software package called CINController, developed at APS and
Lawrence Berkeley National Laboratory to serve as a QT-based
user interface for control and data collection from the FSFCCD.
Real-time calculations performed by MPIFCCD include dark
image integration and subtraction, noise image integration, image
descrambling, and lower-level discrimination. MPIFCCD allows
for continuous real-time data collection of FSFCCD data at image
rates of 100 frames- per-second (fps) for 1 mega-pixel images and
1000fps for 10 kilo-pixel images. In the future, more complex
computations will be implemented in real time with MPIFCCD.

Index Terms—CCD, MPI, real-time, XPCS.

I. INTRODUCTION

X -RAY Photon Correlation Spectroscopy (XPCS) is an
important experimental technique at synchrotrons such

as the Advanced Photon Source (APS) at Argonne National
Laboratory. In this technique, x-rays with energy at around
E = 7keV illuminate and scatter off of an experimental
sample, creating a speckle pattern of scattered x-rays that
is captured with a high speed x-ray sensitive area detector.
Typically, the sample is a glassy system exhibiting dynamic
material characteristics that must be measured over time.
Time auto-correlation of collected speckle patterns reveals
the time-varying structural changes in the sample. Because it
is desirable to capture rapidly changing material dynamics,
the x-ray camera must be run at a high frame rate from
60 frames-per-second (fps) to 1000fps. Furthermore, because
long-term dynamics spanning several decades of time must
be recorded, the camera must be run for several minutes,
potentially creating extremely large data sets [1]. A diagram
of the experiment setup is shown in Figure 1.

At Sector 8 at the APS the Fast Charge-Coupled Device
Detector Two (FCCD2) is used for collecting speckle patterns
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Fig. 1. As x-rays scatter off of sample, high-speed area detector, called
FCCD2, captures speckle pattern.

at 100fps for 960x960 pixel images and at 1000fps for 960x90
pixel images [2] [3]. The FCCD2 operates on the principle of
direct x-ray detection, in which x-rays impinge directly upon
the detector sensor, a deeply depleted silicon CCD, and create
charge that can be detected by the camera electronics. The
direct-detection FCCD has a large signal-to noise ratio because
each 7keV x-ray photon creates 7000/3.65=1917 electrons,
which is much larger than the electronic noise in the detector.
The speckle pattern images can be compressed by taking
advantage of this large signal-to-noise ratio by using a lower
level discriminator (LLD) to determine if a pixel has x-ray
photons present. Any pixel devoid of detected x-ray energy
can be thrown away, thus compressing the speckle images.
Because the speckle patterns tend to be very sparse, an 80%
compression ratio can be achieved. The following pages de-
scribe the use of MPI-based software for compressing speckle
images in real-time. The advantage to real time compression
is a great reduction in necessary data storage. For example,
while running the FCCD in the 100fps mode for five minutes
results in 50GB of data, real-time compression by 80% yields
10GB of data.

II. FCCD HARDWARE

The FCCD2 camera head sits on the beam line and collects
x-ray speckle patterns. The camera head is wired to a custom
electronic circuit board, called the Camera Interface Node
(CIN)residing in an Advanced Telecommunication Computing
Architecture (ATCA) crate which in turn connects to a back
plane running a high speed local Ethernet network. Data is
streamed from the CIN through a router residing on the ATCA
crate to a resident Linux blade. As the Linux blade processes
the camera image data in real time, it streams compressed data
to a disk array for storage resident in the ATCA crate.



IEEE NUCLEAR SCIENCE SYMPOSIUM,CONFERENCE RECORD, NOVEMBER 2014 2

Fig. 2. An example of a cool figure

III. COMPRESSION METHOD

The image data stream from the CIN to the Linux blade in
a scrambled pixel order not related to the actual geometry of
the CCD sensor.Therefore, the images must be descrambled,
that is, rearranged on a pixel-by-pixel basis, to produce images
corresponding to the geometry of the sensor. The images are
descrambled in real time to produce descrambled images,

Ids(x, y) = Iraw(f(x, y), g(x, y)), (1)

where Ids is the descrambled image, f(x, y) and g(x, y) are
maps from raw image space to descrambled space, and Iraw

is a raw scrambled image as emitted from the CIN.
Because the FCCD2 detector produces a fixed background

signal unrelated to captured x-rays, dark subtraction, or the
subtraction of an averaged reference image from each streamed
data image, must be performed. The reference image is com-
puted from an average of a series of dark images, or images
taken in the absence of x-ray light. The dark reference D(x, y)
is computed as

D(x, y) =
1
N

N−1∑
k=0

Idsk
(x, y). (2)

A second reference image Sq(x, y), called the “squared refer-
ence image,” takes into account the random electronic noise of
the FCCD2 on a pixel-by-pixel basis. The squared reference
image is calculated as

Sq(x, y) =
1
N

N−1∑
k=0

I2
dsk

(x, y). (3)

The dark reference D(x, y) and squared reference Sq(x, y) are
computed simultaneously by taking a series of dark images
before the XPCS experiment begins. Typically, a reference set
is acquired before each XPCS data set. Once we have acquired
the reference series and computed D(x, y) and Sq(x, y) we
can compute the standard deviation image N(x, y) by

N(x, y) =
√

Sq(x, y)−D2(x, y). (4)

We compute a lower level discriminator or threshold T (x, y)
used for image compression as

T (x, y) = D(x, y) + P ×N(x, y), (5)

where P is some number of standard deviations of electronic
noise. Image compression is done as

Ith(x, y) =
{

Ids(x, y)−D(x, y) : Ids(x, y) ≥ T (x, y)
0 : Ids(x, y) < T (x, y)

(6)

The term Ith(x, y) is the image after comparing to the
threshold image and I(x, y) is the descrambled image from
the camera. When saving the final images Ith(x, y) only non-
zero pixels are stored. During compression a sparse matrix is
generated in which pixel (x, y) position and pixel magnitude
are stored. Because of the nature of the XPCS speckle pat-
terns, typically 95% of the pixels are devoid of x-rays and
results in a 80% compression rate after storing pixel values
and coordinates. The computation load for each raw image
acquired in an XPCS experiment is the sum of descrambling,
dark subtraction, threshold comparison, and sparse matrix
generation. For a pixel of M pixels the number of operations
to be performed is around 4M .

IV. IMPLEMENTAION OF REAL-TIME COMPRESSION FOR
FCCD2

The FCCD2 is preceded by the FCCD1 at APS Sector 8
for XPCS experiments [4]. For compressing XPCS speckle
images, the FCCD1 utilized a commercial Camera-Link Dalsa
Frame Grabber with a built-in Field-Programmable Gate Array
(FPGA). The FPGA on the grabber card was programmed in
VHDL to perform descrambling , dark subtraction, lower-level
discrimination and sparse matrix generation [5] [6]. Because
the ATCA platform used by the FCCD2 supplied no FPGA-
equipped circuit board, we were forced to consider alternative
technologies for real-time image compression.

A. Real-Time versus Immediate-Time

Before one can decide on which technology to use for real-
time data compression, one must be clear on the meaning
of “real-time.” We use the term “real-time” to mean that
the computation keeps up with the incoming data. That is,
if a camera generates 1000fps, the computation engine can
process 1000fps. In a real-time system, it is not necessary
for computations to be complete at any exact clock time. The
system may include long data queues that add a varying time
delay to the processing. Also, the processing may not run at a
uniform rate. But to be real-time, all that is necessary is for the
average processing rate to be at least as fast as the incoming
data.

We introduce the term “immediate-time” to define a system
that must respond to an event at a precise time delay. For
example, a trigger system in a particle physics experiment
must run in immediate time. The trigger pulses cannot have
arbitrary time delays and simply keep up with the experiment,
but must occur at a repeatable clock time relative to particle
physics events. For image compression, we need a real-time
system, but not an immediate-time system.

B. FPGA for Data Compression

An FPGA is the only programmable commercial hardware
that can function in immediate time. FPGAs feature high
speed processing with predictable and repeatable time delays.
As FPGA hardware and development tools improve it has
become easier to develop complex FPGA algorithms. Because
the FCCD1 project produced extensive FPGA source code,
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we were tempted to use an FPGA for real-time compression
for the FCCD2. The problem with this plan was that we had
no specialized FPGA hardware already resident in the ATCA
crate. Therefore, we decided to use a software-based solution.

C. Graphics Processing Unit (GPU) for Data Compression

We investigated the use of a NVidea Tesla GPU for real time
processing for the FCCD2 [7]. The GPU can be programmed
relatively easily with the CUDA library, and lately can be
programmed with more general libraries such as the Message
Passing Interface (MPI) [8]. The reason we abandoned the use
of a GPU for the FCCD2 is that we could find no GPU to fit
into an ATCA crate. We would be required to install a separate
Linux computer outside of the ATCA crate to house the GPU.

D. Linux Software Solution

Because of the availability of high-performance Linux
blades for the ATCA platform, we chose to create a real-time
software library for XPCS data compression. The development
time is relatively short when writing in C++, as compared to
VHDL for FPGAs. Also, more blades can be added to the
ATCA crate if more processing is needed. Because the FCCD2
ATCA crate already houses a Linux blade, we felt it low-risk to
develop a data compression software library. If the software
solution were to fail, we could always revert to developing
specialized FPGA hardware for data compression.

V. MULTI-THREADED VERSUS MULTI-PROCESS

In creating a software library for real-time data compression,
we were forced to chose a software technology. The most
traditional software design is to run a single execution thread
to process one image at a time. We quickly found that even
a high speed Linux blade cannot process quickly enough to
keep up with the streamed FCCD2 data when processing
images one-at-a-time. We measured the maximum image rate
for single-thread processing to be around 300fps for 960× 92
pixel images.

The next technology we evaluated was to run a single
process with multiple execution threads, with each thread
processing its own image. In this way, if four threads are
run, four images are processed at once. Because all the treads
are part of one process, each of the threads shares the same
memory space. Shared memory gives the benefit that no data
need be copied from one execution thread to another. A
down side to a single-process, multiple-thread application is
the difficulty of developing and maintaining the code. Often
the data must be mutex protected, which can slow down the
processing. We implemented a simple version of a single-
process, multi-threaded library running on a high-performance
Linux computer. We found that the software could keep up
with the 1000fps data rate of the FCCD2.

Finally, we evaluated the use of the MPICH version MPI
to create a multi-process program, with each process running
a single execution thread and owning its own memory space,
necessitating image copies between processes [8]. The multi-
process application was easier to develop than the single-
process multi-threaded application because no data was shared,

and possibly corrupted, by competing threads. Also, the multi-
process program can be run across several Linux blades if
more processing power is desired. We found that, like the
multi-threaded application, the multi-process application could
keep up with the 1000fps data generated by the FCCD2. In
fact, the two applications ran at about the same speed. Because
of ease of support and expandability, we decided to use MPI-
based software to perform real-time data compression for the
FCCD2.

VI. STRUCTURE OF THE SOFTWARE

The FCCD2 software began as QT-based program called
CINController with two threads: 1. a thread for receiving
the UDP data packets generated by the FCCD2 CIN, 2. a
thread for image display, saving, and user interface [9]. The
application, originally developed at LBL, runs on a single
process and provides the most basic readout system for the
FCCD2. The UDP receiver thread is set to a high priority and
the UDP packet size is “jumbo” or 9000 bytes to minimize
the loss of data from the FCCD2 camera. A diagram of the
software is shown in Figure 3.

Fig. 3. CINController software structure.

The CINController software was adapted to run in a multi-
process mode using the MPICH MPI library. The original
CINController software shown in Figure 3 was converted into
an MPI program that can run in any number of processes.
Each process in the MPI program is called a “rank,” and
each rank is numbered counting from 0. Rank 0 runs the
UDP receiver thread and a second thread for scattering new
images to all processes, and running calculations. Rank 1
runs a thread that processes images, then gathers processed
images from all ranks and stores them in a queue. A second
thread in Rank1 runs the user interface for image display,
data saving and camera control. Within any process, threads
communicate via QT signals, a mechanism for inter-thread
communication provided in the QT library. Between processes,
each rank communicates via MPI messages. A diagram of
a two-process version of our MPI-based application, called
CINControllerMPI is shown in Figure 4. More processes can
be added that simply do calculations. Typically we run the
CINControllerMPI software with four processes on a single
four-core Linux blade during XPCS experiments. We designed
the software such that all MPI calls are in a single C++ class
called MPIFCCD.

A. Scattering and Gathering of Images

As images are streamed from the CIN to the Linux blade,
CINControllerMPI captures the images with the UDP thread
of Rank 0. These captured images are stored in a queue for
later processing. The MPI thread of Rank 0 takes images off
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Fig. 4. CINControllerMPI software structure.

the queue and scatters complete images to each rank. That
is, all ranks get one complete image to process. Next, all
ranks synchronize and process their respective images. Once
processing is done, all ranks synchronize, and rank 1 gathers
up all processed images from all ranks and stores them on a
queue in rank 1. The GUI thread of Rank 1 takes processed
images from the queue, displays them, and saves them to the
RAID array.

B. Accumulation of Dark Images

Because we must calculate reference images for lower-
level discrimination and dark subtraction, book keeping issues
arise when the accumulation of images is performed across
many processes. In CINControllerMPI, each rank accumulates
a subset of the total accumulated images. Each rank must keep
track of how many images it has accumulated. Once all images
are accumulated all ranks must synchronize to compute the
final summed dark and squared reference images as shown
in Equations 2 and 3. Once the noise and threshold images
of Equations 4 and 5 are computed by rank 1, copies of
these reference images must be sent to all ranks. In this way,
all ranks can correctly perform dark subtraction and image
compression.

C. User Interface Issues

To prevent detector control signals from interferring with
data acquisition, he ATCA crate has two separate networks: a
1GB Ethernet network for FCCD2 control, and a 10GB Ether-
net network for FCCD2 data. The CINControllerMPI software
must communicate with the FCCD2 over both networks with-
out interrupting the MPI real-tome processing. Also, because

TABLE I
MAXIMUM PROCESSING SPEED, 960× 92 PIXELS,12K NON-ZERO PIXELS

Cores Max fps Max MB/s
1 500 86
2 1000 173
3 1500 259
4 2200 380

APS uses the EPICS control system, CINControllerMPI runs
an instance of EPICS as a thread in rank1 [10].

Fig. 5. User Interface developed at LBL

VII. PERFORMANCE DATA AND FUTURE WORK

The FCCD2 system runs Scientific Linux 6 on an Advantec
MIC5320 blade utilizing four 2.1GHz cores and residing in
a Kontron ATCA crate. The CINControllerMPI software is
built with QT version 4.8 and MPICH version 3.0.4 [9], [8],
[11]. When running the system at Sector 8 APS we collected
software performance data for real-time image compression
in the 960 × 92 and 960 × 960 modes. For image compres-
sion, the system must be able to run indefinitely with the
software keeping up with the detector. We tested running
CINControllerMPI with one, two, three, and four cores to
determine processing speed, and to determine the number of
cores necessary for real-time continuous image compression.
It was necessary to test of the software could keep up with the
detector running at 1000fps in 960×92 mode and at 100fps in
960×960 mode. This was verified by collecting 5minute data
sets, necessary for some XPCS experiments. Further, to test the
maximum processing rate of the software, the image queues
in the software were filled with raw images, and flushed to run
the MPI computations as fast as they could run. We tabulated
data in maximum frames per second versus number of cores.
Tables are shown for both image modes Tables I and II

For acquiring reference images, the system must only run
for 10seconds, allowing the software to lag behind the camera
by utilizing image queues. By filling up the image queues with
raw images and running the reference image calculation as fast
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TABLE II
MAXIMUM PROCESSING SPEED, 960× 960

PIXELS,115K NON-ZERO PIXELS

Cores Max fps Max MB/s
1 50 92
2 100 184
3 140 258
4 160 294

TABLE III
MAXIMUM PROCESSING SPEED, 960× 92 PIXELS,REFERENCE IMAGES

Cores Max fps Max MB/s
1 300 52
2 550 95
3 780 134
4 960 166

as it could run, we determined the maximum image rate that
CINControllerMPI can process. Results are tabulated in Table
III for the 960 × 90 image mode.Because reference image
calculation requires more operations than image compression,
the maximum data rate is less than the required 1000fps
in 960 × 90 image mode. However, because the reference
acquisition needs to be run for a few seconds, the use of image
queues to buffer images allows the MPI software to function
properly.

Future work for the FCCD2 MPI software includes the
running of several Linux blades in the ATCA crate to speed
processing and adding more complex computation related to
XPCS data analysis.

VIII. CONCLUSION

We have designed MPI-based software running in real-
time on a Linux blade to perform image dark subtraction
and compression for the FCCD2 XPCS data. This software
was design for an application previously performed by a
custom FPGA for the FCCD1. It is possible that MPI-based
real time software can perform many tasks that are currently
performed by FPGAs. In particular, any task that need not
run in immediate-time, where the processing must have very
short and repeatable time delays relative to the incoming data,
but can run in real-time, where the processing must simply
keep up with the average incoming data rate with variable
instantaneous time-delays, can possibly be run with real-time
MPI software as opposed to FPGA firmware. Because of the
relative ease of C++ programming compared to FPGA pro-
gramming, and availability of off-the-shelf computer hardware,
many applications can now be performed more simply and
cheaply with MPI than with FPGAs.
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