Mar165 CCD Detector Pool Guide
Contents

I. Quick Start
 1. Open Epics GUI
 2. Start Marccd Software
 3. Reboot the CCD to start cooling
 4. Enable Remote control mode
 5. Start the Epics IOC
 6. Start MEDM
 7. Start ImageJ viewer

II. Important Notes

III. Common Problems/Solutions

IV. Remote Access

V. Data Storage

VI. Technical Specifications
Quick Start

- Connect data cable from Detector to Computer PCI card
 - Mar165 A and B have orange fiber optic cable
 - Mar165 C has a black SCSI-like cable.

- Turn on the Detector power supply
 - Use the power strip next to the chiller

- Connect Ethernet to Computer!

- Turn on computer and Login
 - user name: dpuser
 - password: (ask DP Staff)
 - Alternatively, log in with any LDAP account

- Start Software using EPICS Launcher
 - select ‘Mar165’ and click Load
 - Open MARCCD by clicking on Start

*GUI can be started with this desktop icon:
Quick Start - Reboot Detector

- Within marccd, you must Reboot the CCD controller & start cooling:
 - Locate the menu bar
 - Click on ‘Configure’ → ‘Detector’
 - Select ‘Reboot’
 (should hear 2 beeps from the controller)
 - If Pressure < 1.0 Torr, then click ‘Yes’ in cooling dialog box
 - Compressor should start about one minute after you say ‘Yes’
 - NOTE: cool down to -70C will require approximately 2hrs
Quick Start - Enable Remote Mode

- Before the EPICS IOC can function, the detector software must be placed in Remote Mode
 - Locate the marccd menu bar
 - Click on Acquire → Remote Control
 - Click on “Start” in dialog box

Now you can start the EPICS software from the launcher:
- start IOC
- start MEDM

To view images in real time:
- start ImageJ
Important Notes

- **Take a Background image, first and frequently!**
 - If your file size is only 4096 bytes, then you probably did not take your first background, which marccd stores in the controller memory.

- **ImageJ**
 - To change contrast, use the shortcut **Ctrl-Shift-c**
 - To generate a line profile, use the ‘line’ drawing tool from the toolbar, then type **Ctrl-k**
 - To get statistics on the full image or a box, type **Ctrl-m**
 - For additional information, see http://rsbweb.nih.gov/ij/

- **Format**
 - 2048 × 2048 array
 - Images are saved in the .tif format
 - Each pixel is binned 2x2 to a size of 80 × 80 µm²
 (resolution is limited by the scintillator and fiber-optic taper so there is no 1x1 option)
 - Each pixel has a depth of 16-bits
Common Problems/Solutions:

Advanced Photon Source, Argonne National Laboratory
Common Problems/Solutions:

- **Plugins**
 - Under ‘All’, make sure that ‘Image1’ is enabled

- **Readout**
 - Check that binning is 2x2

- **Collect**
 - Check that ‘Array Callbacks’ is enabled

- **File**
 - Check that the current ‘File Path’ exists
 - Check that the ‘Filename format’ is correct

- **ImageJ**
 - Click the ‘Start’ button to activate the EPICS AD Viewer Plugin
 - Check that the PVprefix matches the MEDM screen
 - If you edit this text, you need to type ‘Enter’ to reconnect with the new PV
 - The box will appear green when connected (red if the PV is unreachable)
 - If the box is white, you need to click on it, and type ‘Enter’
 - You can close the plugin and restart it from the ‘Plugins’ menu of ImageJ
Remote access to the MarCCD computer

You have 2 different options:

(1) ssh login
 • You will need the IP address of the computer
 – Open a terminal, run command: /sbin/ifconfig
 • On the remote computer:
 – open a new terminal
 – Run the command: ssh –Y det@[IP address]
 (For example: ssh –Y det@164.54.101.69)
 – The password is the same you logged in with locally!
 – Run the command: ~/start_gui
 ▪ If that fails, try: /local/DPbin/wxDPStartup/start_gui

(2) run MEDM and ImageJ remotely
 • You will need the correct EPICS PV prefix (eg. dp_mar165_xrd78)
 • You will need access to the APSshare network disk from the remote computer:
 – You can mount it from your sectors local dserver
 (eg. At sector 2, look for s2dserv.xray.aps.anl.gov:/export/APSshare)
 – Within /APSshare/DetectorPool you will find the appropriate startup scripts
 – e.g., /APSshare/DetectorPool/start_medm_mar165 dp_mar165_xrd78
 • NOTE: marccd and the IOC cannot be remotely started or stopped using this method.
Storing Data:

- It is strongly recommended that you write your data to network mounted disk space. Locally mounted /disk2 is a large HDD that can be used for storing your images, however, DP computers see a lot of heavy use. We cannot guarantee that you will not have a disk failure.

- Network disk space is a more stable option. The transfer of images over the network is fast enough to keep pace with the fastest detector frame rates.

- Other disk resources may be available at your sector (consult beamline staff), and users are always welcome to mount their own media (large flash drives, USB-HDD, etc).

NOTE: If you do choose to save data locally, please copy (and delete) files before returning our equipment so that disk space is available for the next user.
Tech Specs

<table>
<thead>
<tr>
<th>Technical Specifications</th>
<th>CCD165</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Single CCD; single fiber-optic taper</td>
</tr>
<tr>
<td>X-ray Sensitive Surface</td>
<td>Round, 165mm diameter (21,380mm²)</td>
</tr>
<tr>
<td>DQE (Detective Quantum Efficiency)</td>
<td>Up to 0.8 for 8keV to 12keV radiation</td>
</tr>
<tr>
<td>PSF (Point Spread Function)</td>
<td>FWHM = 100µm; FW 1%M = 300µm</td>
</tr>
<tr>
<td>Gain</td>
<td>6e⁻/12keV photon</td>
</tr>
<tr>
<td>Read Noise</td>
<td>9 e⁻/pixel @ 3.5 sec. readout; 13 e⁻/pixel @ 2.5 sec. readout</td>
</tr>
<tr>
<td>Dark Current</td>
<td><0.01 e⁻/pixel/sec. @ 2048 × 2048 pixels</td>
</tr>
<tr>
<td>Full Well Capacity</td>
<td>400,000 e⁻/pixel = 65,000 12keV photons/pixel @ 2048 × 2048 pixels</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>16 bits</td>
</tr>
<tr>
<td>Fiber-optic Taper</td>
<td>2.7:1 demagnification ratio</td>
</tr>
<tr>
<td>CCD Chip</td>
<td>61mm × 61mm; 4096 × 4096 15µm pixels</td>
</tr>
<tr>
<td>CCD Operating Temperature</td>
<td>−70° C</td>
</tr>
<tr>
<td>Cooling</td>
<td>Closed-cycle refrigeration</td>
</tr>
<tr>
<td>Readout Electronics</td>
<td>4-channel readout; 16-bit ADCs</td>
</tr>
</tbody>
</table>

Readout Options (Software Selectable):

<table>
<thead>
<tr>
<th>On-chip Binning</th>
<th>Pixel Size</th>
<th>Readout Time</th>
<th>Number of Pixels in Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 × 2</td>
<td>80µm</td>
<td>2.5 sec.</td>
<td>2048 × 2048</td>
</tr>
<tr>
<td>4 × 4</td>
<td>160µm</td>
<td>1.0 sec.</td>
<td>1024 × 1024</td>
</tr>
<tr>
<td>8 × 8</td>
<td>320µm</td>
<td>0.5 sec.</td>
<td>512 × 512</td>
</tr>
</tbody>
</table>

Computer Interface

Proprietary PCI full-frame DMA; single fiber-optic cable

Physical Dimensions:

- **Detector Head**: 21.5cm diameter × 34cm; weight: approx. 20kg
- **Electronics/Cooling Assembly**: 72cm × 43cm × 64cm; weight: approx. 60kg