
areaDetector Update:

EPICS V4 and More
Mark Rivers

GeoSoilEnviroCARS, Advanced Photon Source

University of Chicago

• Last TWG areaDetector talk was April 2016
– Releases since then: R2-5, R2-6 (very soon)

• EPICS V4 driver and plugin
• Other new and improved drivers
• Other new and improved plugins
• ImageJ plugins
• Future plans

Outline

EPICS Version 4 in a Nutshell
• New Protocol, “pvAccess”
• Structured data
• Introspection interface,

“pvData”
• Dynamic typing
• Streaming
• Standard Scientific Types
• RPC and put/get
• New smart database
• Codec based transport
• All APIs in C++ and Java
• Python and Matlab
• High Performance
• High Reliability

Version 4 Additions to EPICS

$ eget -s XCOR:LI24:900:TWISS
non-normative type
structure
 double energy 5.00512
 double psix 37.7625
 double alphax 13.6562
 double betax -2.78671
 double etax -0.00698294
 double etaxp 0.00107115
 double psiy 31.9488
 double alphay 116.762
 double betay 5.2592
 double etay 0
 double etayp 0

Figure: Example EPICS v4 pvAccess method “eget”,
getting PV whose value is a structure giving the
Courant-Snyder parameters at a corrector magnet.
This example is from the LCLS control system at SLAC.

The EPICS V4 “Normative Types”
Version 4 Additions to EPICS

$ eget -s XCOR:LI24:900:RMAT
 0.0727485 0.0289316 0 0 0.0652488 0.00125391
 0.0578214 0.0391775 0 0 -0.027185 -0.000192344
 0 0 0.00943029 1.14291 0 0
 0 0 -0.0013367 -0.0348832 0 0
 -0.000370971 -0.000283933 0 0 -0.0182387 -0.000198345
 0.10031 0.018722 0 0 -10.5721 -0.179568

$ eget pva://mccas0.slac.stanford.edu:39633/QUAD:LTU1:880:RMAT?type=design

$ eget -s LCLS:ELEMENTS
ELEMENT ELEMENT_TYPE EPICS_DEVICE_NAME S_DISPLAY OBSTRUCTION
CATHODE MAD CATH:IN20:111 2014.7 N
 SOL1BK MAD SOLN:IN20:111 2014.7 N
 CQ01 MAD QUAD:IN20:121 2014.9 N
 SOL1 MAD SOLN:IN20:121 2014.9 N
 XC00 MAD XCOR:IN20:121 2014.9 N
…

The Normative Types Spec defines a standard for commonly used data types,
http://epics-pvdata.sourceforge.net/alpha/normativeTypes/normativeTypes.html

Figure: An extract of the Table of
Contents of the Normative Types
Specification document, together
with examples of 4 selected types

http://epics-pvdata.sourceforge.net/alpha/normativeTypes/normativeTypes.html
http://epics-pvdata.sourceforge.net/alpha/normativeTypes/normativeTypes.html
http://epics-pvdata.sourceforge.net/alpha/normativeTypes/normativeTypes.html

What does an EPICS V4 PV for structured data look like?
Version 4 Additions to EPICS

The pvAccess PV name
EPICS V4 data type identifier “NTNDArray”

The image raw data

The image meta data; giving how to
interpret the data in the value field,
and other information.

Figure: A screenshot of the output of
the EPICS V4 “pvget” command,
showing data of a PV which encapsulates
all the data of an areaDetector NDArray in
in Normative Type NTNDArray. Example
from B. Martin’s AD work at BNL.

EPICS Version 3 basic block diagram
Version 4 Additions to EPICS

Channel Access Client

CA Server (rSrv)

IOC database

Channel Access (CA) protocol

Device I/O

EPICS in the nominal usage: An EPICS client communicates over
Channel Access (CA) protocol to an Input/Output Controller (IOC)

Channel Access server (module rSrv in an IOC)

Input / Output Controller (IOC)

EPICS Version 4 is an extension of V3
Version 4 Additions to EPICS

CA

pvAccess Client

pvAccess

V4 IOC == V3 IOC + pvAccess Server

Use Case: Network efficient acquisition
of archived meta data

Presently, only 1 PV per pvAccess channel.
But plan is to get/monitor a group of PVs
through one pvAccess channel.

Channel Access Client

IOC database

Device I/O

IOC
pvaSrv rSrv

EPICS Version 4 includes CA
Version 4 Additions to EPICS

pvAccess Client

pvAccess

The pvAccess API includes Channel Access support, so one client lib does both

CA

Channel Access Client

IOC database

Device I/O

CA

IOC
pvaSrv rSrv

EPICS Version 4 new database
Version 4 Additions to EPICS

pvAccess Client

pvAccess

A new smart database, “pvDatabase” can be used for data
assembly and processing

CA

Channel Access Client

CA

IOC

Device drivers etc stay
only under IOC database

IOC database

Device I/O

Examples; the SNS and NSLS-II beamline
experiment high performance data
acquisition and processing.

pvDatabase
pvaSrv rSrv

EPICS Version 4 middleware support
Version 4 Additions to EPICS

pvAccess Client

pvAccess

RPC and Service Oriented Architecture (SOA)

CA

Channel Access Client

CA

IOC

IOC database

Device I/O

Examples; the SLAC/ESS model and
infrastructure system; BNL/FRIB

configurations; and NSLS-II experiment
data support

pvAccess Server

BYO back-end
datasource

pvDatabase
pvaSrv rSrv

• New plugin that converts NDArrays into the
EPICSv4 normative type NTNDArray

• An embedded EPICSv4 server serves the new
NTNDArray structure as an EPICSv4 PV

• High performance, ~3.2GB/s shown here
• Can be received by any EPICSv4 client

– Java, Python, C++ versions of pvAccess
– CSS has a widget that can display NTNDArrays
– caQtDM has a new camera widget to display

NTNDArrays
– Tim Madden is writing a version of the Java

areaDetector ImageJ plugin based on pvAccess; will
talk to this plugin

– Can include an NTNDArray receiver in another IOC

NDPluginPva

• New pvAccess driver receives
NTNDArrays over the network,
converts to NDArrays and calls
plugins

• Can be used to run areaDetector
IOC and plugins on another
machine or in another process

• High performance:
– ~1.2 GB/s shown here with

interprocess communication
– Saturating 10 Gb Ethernet links

has been demonstrated

pvAccess Driver

pvAccess: Command Line Tools
>pvinfo 13SIM1:Pva1:Image
CHANNEL : 13SIM1:Pva1:Image
STATE : CONNECTED
ADDRESS : 164.54.160.82:5075
epics:nt/NTNDArray:1.0
 union value
 boolean[] booleanValue
 byte[] byteValue
 short[] shortValue
 int[] intValue
…
 uint[] uintValue
 ulong[] ulongValue
 float[] floatValue
 double[] doubleValue
…
 int uniqueId
 time_t dataTimeStamp
 long secondsPastEpoch
 int nanoseconds
 int userTag
…

>pvget 13SIM1:Pva1:Image -r
'field(uniqueId,dimension)'
13SIM1:Pva1:Image
structure
 int uniqueId 886580
 dimension_t[] dimension
 dimension_t
 int size 1024
 int offset 0
 int fullSize 1024
 int binning 1
 boolean reverse false
 dimension_t
 int size 1024
 int offset 0
 int fullSize 1024
 int binning 1
 boolean reverse false

NDPluginPVA and pvAccess Driver
Demo

• Driver that allows any EPICS Channel Access client to create
NDArrays in an areaDetector IOC.

• Logical inverse of NDPluginStdArrays
– That plugin converts NDArrays in an IOC into standard EPICS

waveform records for use by Channel Access clients.
– Also writes to additional records to describe the array structure. (SizeX,

SizeY, ColorMode, etc.)

• NDDriverStdArrays
– This driver receives EPICS waveform records from CA clients
– Converts them to an NDArray in the IOC.
– Clients must also write to additional EPICS records to define the

structure of the NDArray.

• Similar in concept to pvaDriver
– pvaDriver only works with EPICS V4 PVAccess clients
– NDDriverStdArrays works with EPICS V3 Channel Access clients.

NDDriverStdArrays

• Display data from sscan record
• Simple Python client reads data from sscan record,

writes to NDDriverStdArrays
• Allows real-time display of 2-D scans
• Can write data in standard HDF5 file format
• Any other AD plugins can be used on the scan data

NDDriverStdArrays Use Case
David Vine, LBNL

• Driver receives 1-D arrays, normally from an EPICS
waveform record.

• NDimensions record controls actual number of dimensions to
use when creating the NDArray.

• Dimensions array record controls actual size of each of the
NDimensions dimensions.

• ColorMode record can be used to define the color mode
(Mono, Bayer, RGB1, RGB2, or RGB3) of the NDArray.

• Data type of the NDArray set by the DataType record.
– Int8, UInt8, Int16, UInt16, Int32, UInt32, Float32, or Float64.

• Datatype (FTVL) of the EPICS waveform record can be
– CHAR, UCHAR, SHORT, USHORT, LONG, ULONG, FLOAT, or

DOUBLE.

• Driver does any required type conversion between the
waveform record data and the NDArray data.

NDDriverStdArrays

• 2 modes of operation, AppendMode=Disable/Enable
– Disable: each write to the waveform record generates a

complete NDArray.
– Enable: waveform record contains just part of the NDArray

data; data appended by multiple writes to the waveform
record to construct the complete NDArray. sscan record
client would work in this mode

• Records in Enable mode:
– NewArray, NextElement, Stride, ArrayComplete
– CallbackMode record controls when the driver does

callbacks
• OnUpdate, OnComplete, OnCommand

NDDriverStdArrays

NDDriverStdArrays Demo

Runs Python Unit Tests
• Complete NDArrays
• Line scans (appends line at a time)
• Point scans (appends pixel at a time)

• 4 detectors signals, sent to 4 ROIs

• Now supports Energy and ThresholdEnergy independently
– ThresholdEnergy is used to set per-pixel discriminators
– Energy is used to compute the correct flat-field normalization

• Previously EPICS only exposed ThresholdEnergy
– Camserver was supposed to set Energy=2*ThresholdEnergy
– Bug in some versions of camserver, e.g. our new 1M CdTe detector. It

was freezing Energy at 60 keV, and we collected an entire run of
improperly normalized data

• There are occasions when ThresholdEnergy = Energy/2 is not
the optimum setting, i.e. to avoid strong fluorscence.

Pilatus Driver Update

• If camserver is saving TIFF files then driver now reads the
TIFFImageDescription tag from the TIFF file.

– This is a long string that camserver writes to the file containing all of the
detector settings, including threshold, energy, etc.

– Driver adds this information to the NDArray using an NDAttribute
called TIFFImageDescription.

• The NDFileTIFF plugin in ADCore R2-6 was changed to write
this complete attribute to the TIFFImageDescription tag in the
new TIFF file.

• It will also be written by the NDFileNetCDF, NDFileHDF5,
and NDFileNexus plugins.

– However these plugins are currently limited to 256 character string
attributes, so some of the information will be lost because the string is
longer than 256 characters.

Pilatus Driver Update

• Added support for Electron Multiplying (EM) Gain.
• Added ability to set the BaselineClamp in the Andor

SDK.
• Enforce minimum values of ADShutterOpenDelay

and ADShutterCloseDelay based on query of SDK.
• Implemented ReverseX and ReverseY.
• Fixed bug with AndorPreAmpGain; previously it was

not actually calling SetPreAmpGain().
• Added support for Full Vertical Binning (FVB)

readout mode.
• Added support for EPICS shutter control.

ADAndor

• CdTe pixel array detector available with multiple chips.
– Detector pool has Pixirad-2, 402x1024. Now working at 1-ID.

• Updated driver to work with new PIII chip.
– Square 62 um pixels pixels, not hexagonal.
– Single chip is 402x512 pixels.
– Pixel mode (PM). Each pixel is independent.

• Highest rate capability (> 1MHz), no sharp color separation, multiple
counts if threshold is low.

– Neighbor Pixel Inhibit mode (NPI).
• Only one counter per event allowed to count. The hit is allocated to the pixel

receiving the highest fraction of the total charge. Highest position resolution
and the lowest possible noise but sharpness of the color separation not
completely solved yet

– Pixel Summing mode (PSM).
• The signals of 4 neighbor pixels are summed together in each pixel to

correctly evaluate the total energy of any event involving up to 4 pixels.

Pixirad driver update

• New ADCameraLink, ADPCO drivers
– Drivers for PCO cameras from Tim Madden

• New ADLambda driver
– Driver for Lamda pixel array detectors from John Hammonds

• Many detectors (Pilatus, Prosilica, Point Grey, marCCD,
mar345, Andor, etc.)

– Added support for SerialNumber, FirmwareVersion, SDKVersion,
DriverVersion, and ADCoreVersion which were added in ADCore R2-
6.

• ADSimDetector, ADCSimDetector, pvaDriver
– Moved out of ADExample and into their own repositories

• ADExample no longer used

Other detectors

ADSupport
• New repository ADSupport
• Source code for all 3rd party libraries used by ADCore.

• hdf5, jpeg, netCDF, nexus, szip, tiff, xml2, zlib
• ADBinaries no longer used.

• Pre-built libraries for Windows too difficult to maintain, now all built
from source using EPICS build system

• ADSupport can be built for
• Windows (Visual Studio or MinGW, 32/64 bit, static/dynamic),
• Linux (currently Intel architectures only, 32/64 bit),
• Darwin
• vxWorks (currently big-endian 32-bit architectures only).

• vxWorks previously supported only netCDF file plugin
• All file saving plugins now supported on vxWorks 6.x (TIFF, JPEG,

netCDF, HDF5, Nexus).
• HDF5 and Nexus are not supported on vxWorks 5.x because the

compiler is too old.
• Could imagine migrating saveData to HDF5 since it now works on

all platforms.

Optional Support
• All 3rd party libraries now optional.

• For each library XXX 4 Makefile variables control support for that
library. XXX can be JPEG, TIFF, NEXUS, NETCDF, HDF5,
XML2, SZIP, and ZLIB.

• WITH_XXX YES then drivers or plugins that use this library will be
built. NO then drivers and plugins that use this library will not be
built.

• XXX_EXTERNAL YES then the library is not built in ADSupport,
but assumed to be found external to the EPICS build system. NO then
the XXX library will be built in ADSupport.

• XXX_DIR If defined and XXX_EXTERNAL=YES then the build
system will search this directory for the XXX library.

• XXX_INCLUDE If defined then the build system will search this
directory for the include files for the XXX library.

• All EPICS modules except base and asyn are now optional.

NDPluginOverlay
• New Ellipse shape to draw elliptical or circular overlays.
• Improved efficiency by only computing the coordinates of the

overlay pixels when the overlay definition changes or the
image format changes.

• Important for ellipse because it uses trig functions
• Added CenterX and CenterY parameter for each overlay.

• Can now specify the overlay location either by PositionX and
PositionY, (upper left corner), or by CenterX and CenterY,

• If CenterX/Y is changed then PositionX/Y will automatically update,
and vice-versa.

• Changed the meaning of SizeX and SizeY for the Cross overlay
shape.

• Previously the total size of a Cross overlay was SizeX*2 and SizeY*2.
• It is now SizeX and SizeY.
• Now consistent with the Rectangle and Overlay shapes, i.e. drawing

each of these shapes with the same PositionX and SizeX/Y will result in
shapes that overlap in the expected manner.

Other Plugin Enhancements
• All plugins: ElapsedTime PV for last execution.

• This gives the execution time in ms the last time plugin ran.
• Works both with BlockingCallbacks=Yes and No.
• Convenient for measuring plugin performance without having to run

detector at high frame rates.
• NDPluginROI

• Added CollapseDims to optionally collapse (remove) output array
dimensions whose value is 1. For example an output array that would
normally have dimensions [1, 256, 256] would be [256, 256] if
CollapseDims=Enable

• NDPluginStats
• Added calcuations of 3rd and 4th order image moments, this provides

skewness and kurtosis.
• Added eccentricity and orientation calculations.

• NDPluginFile
• If the NDArray contains an attribute named FilePluginClose and the

attribute value is non-zero then the current file will be closed.

Base Class Enhancements
• asynNDArrayDriver, NDArrayBase.template, NDPluginBase.adl,

ADSetup.adl, all plugin adl files
– ADCoreVersion_RBV, DriverVersion_RBV.
– Show the version of ADCore and of the driver or plugin that the IOC was built

with.
• ADDriver, ADBase.template, ADSetup.adl

– SerialNumber_RBV, FirmwareVersion_RBV, and SDKVersion_RBV.
– Show the serial number and firmware version of the detector, and the version

of the vendor SDK library that the IOC was built with.
• Because NDPluginBase.adl and ADSetup.adl grew larger all plugin

and driver adl files have changed their layouts.

Base Class Enhancements

Viewers

• EPICS_AD_Viewer enhancements
– Automatically set the contrast when a new window is

created.
• Eliminates the need to manually set the contrast when

changing image size, data type, and color mode in many cases.

– When image window is automatically closed and
reopened because the size, data type, or color mode
changes the new window is now positioned in the same
location as the window that was closed.

• Gaussian Profiler
– Like the normal ImageJ line profile in “live” mode, but

with fitting of Gaussian and live display of fit
parameters

Viewers

• EPICS_AD_Controller. Allows using the ImageJ
ROI tools (rectangle and oval) to graphically
define the following:
– The readout region of the detector/camera
– The position and size of an ROI (NDPluginROI)
– The position and size of an overlay (NDPluginOverlay)
– The plugin chain can include an NDPluginTransform

plugin which changes the image orientation and an
NDPluginROI plugin that changes the binning, size,
and X/Y axes directions. The plugin corrects for these
transformations when defining the target object.

– Chris Roehrig wrote an earlier version of this plugin.

Viewer Demo

Future Ideas: ADCore R3-0
• Put more functionality into ADDriver base class

– Currently it does not do much, all code is in each driver for:
• Doing callbacks to plugins
• Processing new exposure time with writeFloat64 function

– writeFloat64 in ADDriver base class would call setExposure() in
derived class

– Derived class would call ADDriver::doPluginCallbacks(), which
would handle setting attributes, getting timestamp, calling plugins,
etc.

• Model 3 motor driver and quadEM, which also use
asynPortDriver, are written this way

• Demultiplexor/multiplexor plugin
– Allow multiple plugins to work on the same data stream when it

saturates a single core

• Simplify file saving modes (no more Single, Capture,
Stream)

Future Ideas: ADCore R4-0
• Change NDArray to NTNDArray for passing data to

plugins
• Utilize EPICS V4 infrastructure
• Smart pointers automatically eliminate all unnecessary

copying
• V4 clients can immediately receive data with no need to

convert to waveform records
• Bruno Martins has demonstrated this working
• Seems like a good path for the future

	Slide Number 1
	Outline
	EPICS Version 4 in a Nutshell
	The EPICS V4 “Normative Types”
	What does an EPICS V4 PV for structured data look like?
	EPICS Version 3 basic block diagram	
	EPICS Version 4 is an extension of V3	
	EPICS Version 4	 includes CA
	EPICS Version 4	 new database
	EPICS Version 4	 middleware support
	NDPluginPva
	pvAccess Driver
	pvAccess: Command Line Tools
	NDPluginPVA and pvAccess Driver Demo
	NDDriverStdArrays
	NDDriverStdArrays Use Case�David Vine, LBNL
	NDDriverStdArrays
	NDDriverStdArrays
	Slide Number 19
	NDDriverStdArrays Demo
	Pilatus Driver Update
	Pilatus Driver Update
	ADAndor
	Pixirad driver update
	Other detectors
	ADSupport
	Optional Support
	NDPluginOverlay
	Other Plugin Enhancements
	Base Class Enhancements
	Base Class Enhancements
	Viewers
	Viewers
	Viewer Demo
	Future Ideas: ADCore R3-0
	Future Ideas: ADCore R4-0

