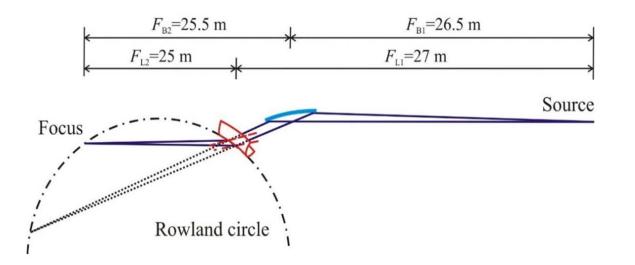


Novel Bragg-Laue high energy monochromator for bending magnet beamlines

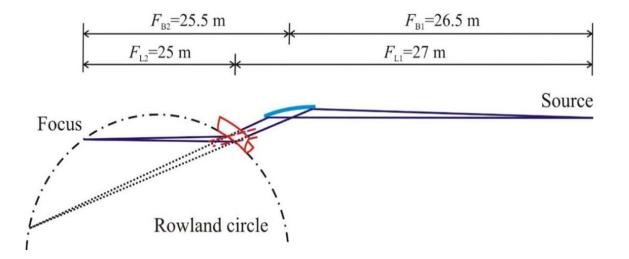
Wenqian Xu Structural Science Group, X-ray Science Division

17-BM: Rapid Acquisition Powder Diffraction


- 17-BM-B station configuration
 - Debye geometry, area detector
 - Sample detector distance: 200 to 1300 mm
 - Energy was at 17 kev, now at 27 kev 51 kev with the new mono

Motivation

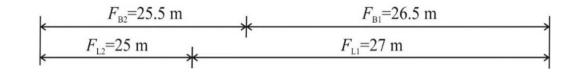
- Materials research, in situ or operando measurements
 - Sample and chamber attenuation
 - Prefer high energy
 - Area detector
 - Prefer high energy
 - Need for peak resolution at low Q
 - Prefer low
 - Bending magnet flux
 - Not much beyond 60 keV
 - Target energies: 30 to 55 kev
- Simple and robust optics
 - Without mirrors. Mono does both H and V focusing
 - Easy energy tuning

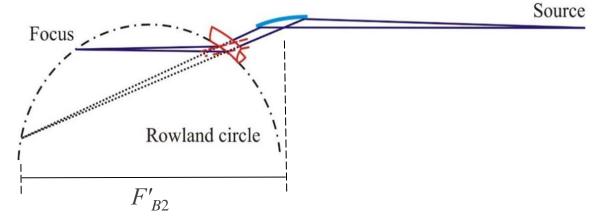

- Bent Bragg-Laue Theory
 - meridionally bent Bragg
 - Increase acceptance
 - Vertical focusing
 - sagittally bent Laue
 - Horizontal focusing

- Bent Bragg-Laue Theory
 - Focusing, H

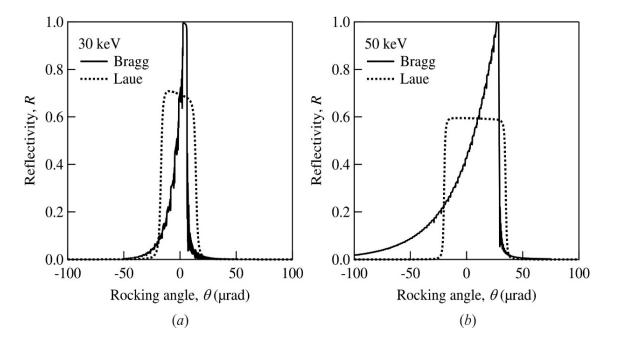
$$\frac{1}{F_{L1}} + \frac{1}{F_{L2}} = \frac{2 \sin \theta_L \sin \chi_L}{R_{sL}}$$

$$R_{sL}$$


- Bent Bragg-Laue Theory
 - Focusing, V


$$\frac{\cos(\chi_L - \theta_L)}{F'_{B2} - (F_{B2} - F_{L2})} + \frac{\cos(\chi_L + \theta_L)}{F_{L2}} = \frac{2}{R_{mL}}$$

$$\frac{\cos(\chi_B - \theta_B)}{F_{B1}} + \frac{\cos(\chi_B + \theta_B)}{F'_{B2}} = \frac{2}{R_{mB}}$$


 R_{mL} Laue anticlastic radius, $R_{mL} = C_L v_L R_{sL}$

 R_{mB} Bragg bending radius $\theta_B = \theta_L$ χ_B asymm angle of Bragg

- Bent Bragg-Laue Theory
 - Energy resolution

Calculated Si (311) diffraction profiles of meridionally bent Bragg crystals (solid lines) and sagittally bent Laue crystals (dotted lines) at (*a*) 30 keV and (*b*) 50 keV. The crystal parameters are $T_L = 0.6$ mm, $\chi_L = 49^\circ$, $C_L = 0.7$ (*a*) $R_{sL} = 2.47$ m, $R_{mB} = 216$ m (*b*) $R_{sL} = 1.48$ m, $R_{mB} = 227$ m.

- Bent Bragg-Laue Theory
 - Energy resolution
 - Bragg off-Rowland bandwidth broadening

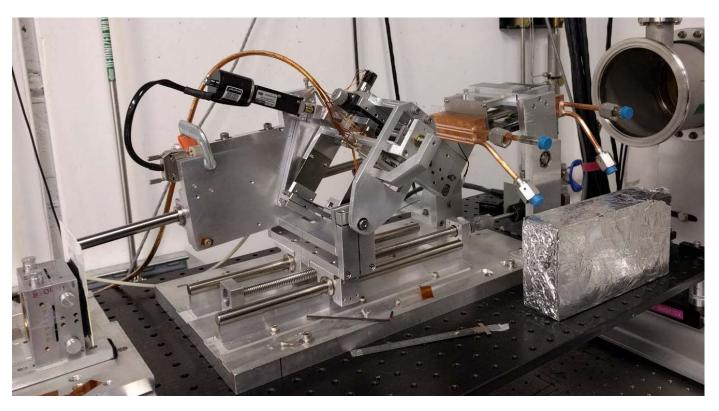
$$(\Delta E/E)_B = \frac{\sigma'_{\nu}}{\tan \theta_B} \left[\frac{F_{B1}}{R_{mB} \cos(\chi_B \mp \theta_B)} - 1 \right] \qquad \begin{array}{c} \sigma_{\nu}' \text{ source vertical} \\ \text{divergence} \end{array}$$

• Laue ...

$$(\Delta E/E)_L = \frac{\sigma_v'}{\tan \theta_L} \frac{F_{B1}}{F_{B2}'} \left[1 - \frac{F_{L2}}{R_{mL} \cos(\chi_L \pm \theta_L)} \right]$$

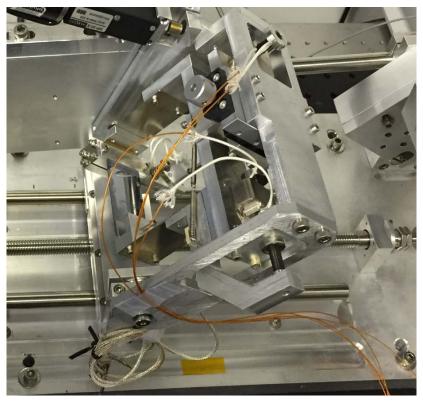
- Bent Bragg-Laue Theory
 - To satisfy both focusing and Rowland conditions

Energy, E (keV)	30	40	50	60
$\theta_{B}, \theta_{L}(^{\circ})$	7.25	5.43	4.34	3.62
χ_B (°)	89.80	88.89	88.47	88.37
R_{mB} (m)	180	238	239	253
χ_L (°)	41.8	50.5	71.6	76.5
R_{sL} (m)	2.19	1.90	1.87	1.59
R_{mL} (m)	28.5	33.0	39.0	29.8

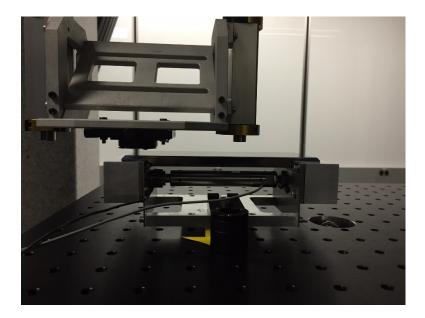

Optimized parameters at each energy with Si(311)

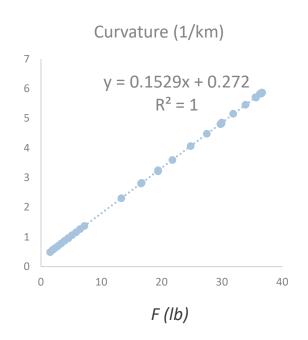
- Bent Bragg-Laue Mono at 17-BM
 - Si (311)
 - Bragg: symmetric, $\chi_B = 90^\circ$
 - Laue: (511) surface, $\chi_L = 49^\circ$

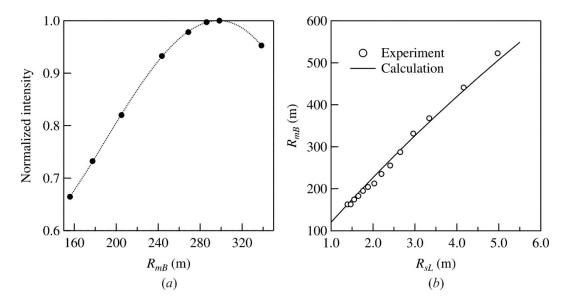
Optimized parameters at each energy with Si(311) at 17-BM


Energy, E (keV)	30	40	50	60
$\theta_{B}, \theta_{L}(^{\circ})$	7.25	5.43	4.34	3.62
$\chi_B(^{\circ})$	90	90	90	90
R_{mB} (m)	216	223	227	231
χ_L (°)	49	49	49	49
R_{sL} (m)	2.47	1.86	1.48	1.24
R_{mL} (m)	41.0	30.7	24.6	20.5

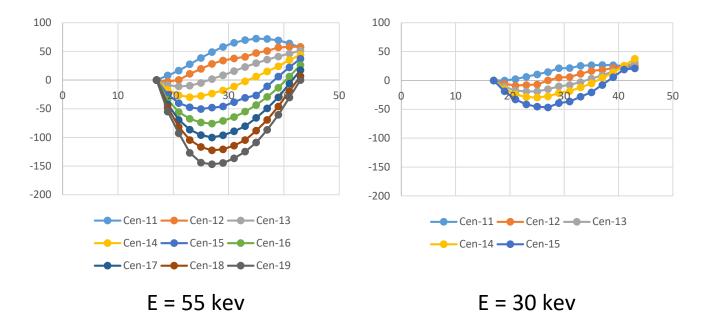
- Bent Bragg-Laue mono at 17-BM
 - Si (311)
 - Bragg: symmetric, 150 × 60 × 8 mm
 - Laue: $(5\overline{11})$ surface, $\chi_L = 49^\circ$, $31 \times 84 \times 0.6$ mm


- Bent Bragg-Laue mono at 17-BM
 - Si (311)
 - Bragg: symmetric, 150 × 60 × 8 mm
 - Laue: (511) surface, $\chi_L = 49^\circ$, 31 × 84 × 0.6 mm

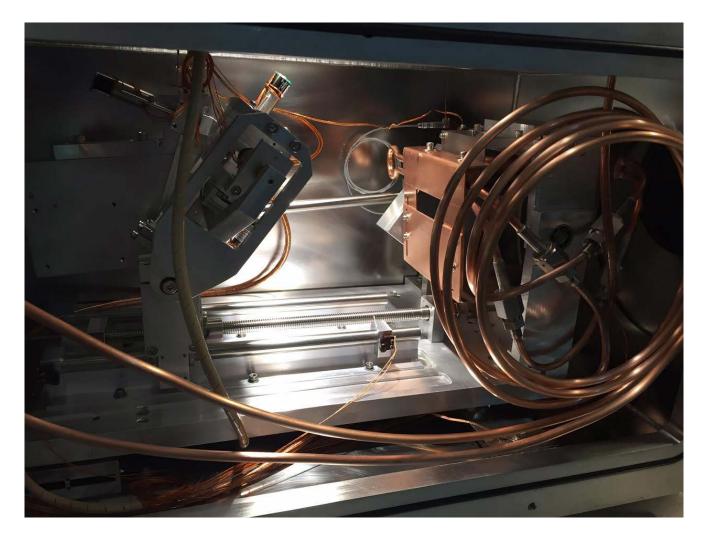


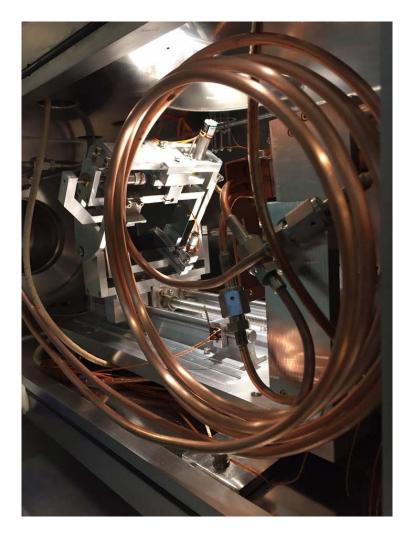

- Bent Bragg-Laue mono at 17-BM
 - Si (311)
 - Bragg: symmetric, 150 × 60 × 8 mm

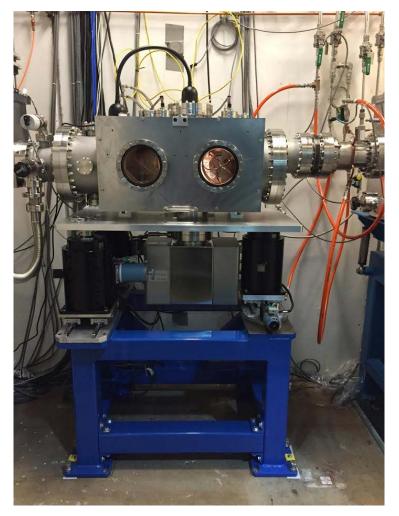
•
$$\frac{1}{R_{mB}} = 0.153 F + 0.272$$


- Bent Bragg-Laue mono at 17-BM
 - Testing at 1-BM,

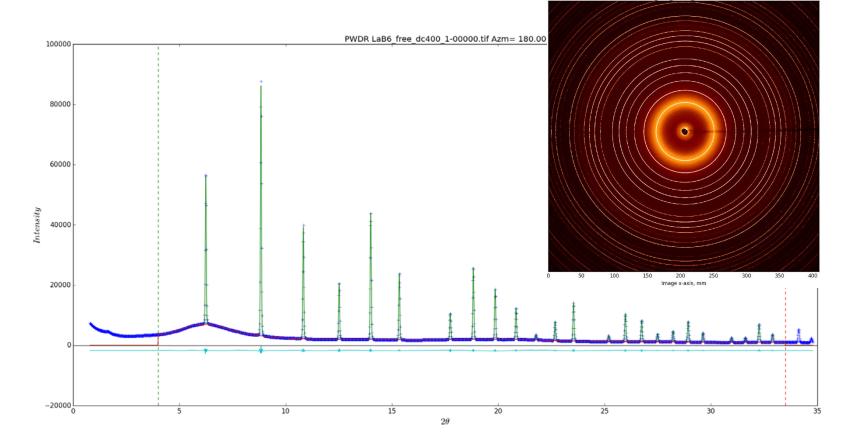
(*a*) Measured beam intensity vs. R_{mB} at 38 keV with a fixed $R_{sL} = 2.7$ m of the Laue crystal. (*b*) R_{mB} values to give the maximum flux at different R_{sL}


the white beam slit at 27 m from source was limited to 1 mm horizontally. The vertical beam aperture was 0.15 mrad, taking most of the vertical source divergence.

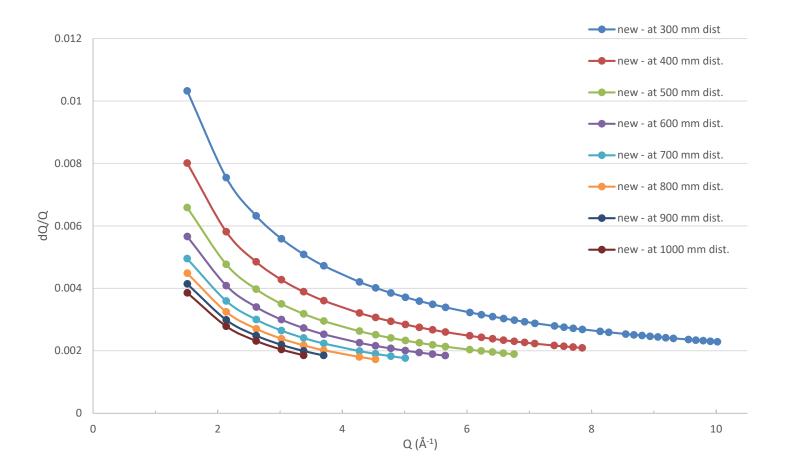

- Bent Bragg-Laue mono at 17-BM
 - Testing at 1-BM, horizontal acceptance



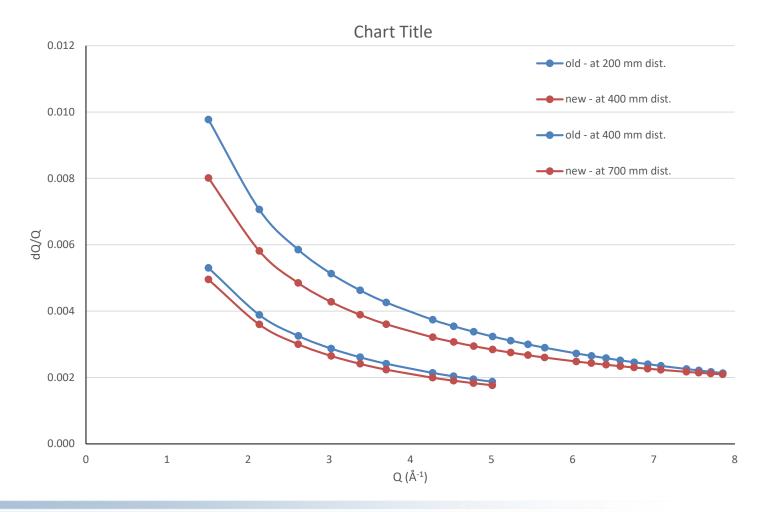
Rocking curve centers at different Laue slide positions


Bent Bragg-Laue mono at 17-BM

- filter


X-ray Transmission

	Thickness		Energy (keV)				
Material	mm	10	15	20	25	30	55
SiC	1.5	0.0%	3.2%	23.9%	48.7%	66.5%	94.2%
С	0.5	82.2%	94.9%	98.0%	99.0%	99.5%	99.9%
total	2	0.0%	3.1%	23.4%	48.2%	66.2%	94.1%
SiC	0.5	2.1%	31.8%	62.1%	78.7%	87.3%	98.0%
С	1.5	55.6%	85.4%	94.0%	97.0%	98.4%	99.8%
total	2	1.2%	27.2%	58.4%	76.3%	85.9%	97.8%


- Bent Bragg-Laue mono at 17-BM
 - Instrument profile at 27 kev with 1 mm ID capillary

- Bent Bragg-Laue mono at 17-BM
 - Instrument profile at 27 kev with 1 mm ID capillary

- Bent Bragg-Laue mono at 17-BM
 - Instrument profile with 1 mm ID capillary

Acknowledgement

Team Members Peter Chupas Andrey Yakovenko Greg Halder Xianbo Shi **Chuck Kurtz** Zunping Liu Lynn Ribaud **Guy Jennings** Karena Chapman Kevin Beyer **Oliver Schmidt Mike Fisher** Jonathan Knopp

Funding LDRD

Support from

Optics group Stanislav Stoupin Xianrong Huang Qian Jun central shop staff