Hardware-based fly scan capabilities at HPCAT

TWG 20 April 2017

Jesse Smith HPCAT

HPCAT – four dedicated HP beamlines

... to advance compression science in multidisciplinary fields using synchrotron radiation

High Pressure XRD with a diamond anvil cell

properties of materials under extreme conditions

Large-format area detector

Conventional step scan (with a DAC)

- **One-dimensional scan** (stolen from Tim Mooney's EPICS training presentation)
 - Do NPTS times
 - Set conditions
 - Trigger detectors
 - Acquire data
 - Write data to disk

- e.g., move motor, wait for move done
- e.g., start scaler, wait for counting done
- e.g., read out detector(s), store data in array

🔀 scan_more.adl	- 🗆 <mark>- X</mark> -
1 16IDB:scan1 IDLE SCAN Complete #PTS 5.	1 61
DATA STATE: POSTED SAVE DATA Active Wrote data to 16ID	08_0663.mda
Positioners CLEAR SETTLING T	IME ^{0,100} (S)
Read 16 IDB : m68.RBV 0	.451
Drive 161DB:m68.VAL - START CENTER END STEP SIZE	2.549 ыртн
-3,000 0,000 3,000 0,100	6.000
UNITS SCAN MODE ABS/REL	AFTER SCAN
DetTriggers SETTLING T	IME 0.050 (S)
1 2	
Detectors	SCAN
01 16IDB:scaler1.S5 21127.000	GO
02 16 IDB : scaler 1. S3 2443.000	PAUSE
03 16 IDB:scaler1.S4 43.000	ABORT
04 16 IDB : user Tran4 . N 176. 085	Less
PLOTS	More ?

Fly scan

- One-dimensional scan (stolen from Tim Mooney's EPICS training presentation)
 - Do NPTS times one time
 - Set conditions
 - Trigger detectors
 - Acquire data
 - Write data to disk

- e.g., move motor, wait for move done
- e.g., start scaler, wait for counting done
- e.g., read out detector(s), store data in array

Fly scan – collect data during stage motion

Hardware-based fly scanning

Core components (examples in this presentation)

- Trigger pulses from motion controller (OMS, Newport)
- Detectors with little/no dead time (Struck multichannel scaler, PILATUS)
- Scan client (Python GUI using PyEpics for channel access)

Complementary stuff (examples in this presentation)

- Manage pulses from multiple sources (softGlue)
- Pulse conditioning, line drivers (Pulse Research Lab)

Trigger pulses from motion controller

Newport XPS (closed-loop)

PCO (dedicated output based on encoder)

GPIO2, pin12, Pulse: A 1 μs pulse with 5V peak voltage is sent for every time interval

OMS, Max-V (open-loop)

Modified BC-037 can provide step out for any/all axes Directly from selector pins (jump pins 3 & 4 on U10 chip as shown)

EPICS support for pulse generation

deviceCmdReply 1

Format output strin

Parse replu string

MeviceCndRep

Actual:

PCO (dedicated output based on encoder)

XPSPositionCompare5.adl								
XPS Position Compare								
Motor Description	Mode	Minimum Position	Maximum Position	Step Size	Pulse Width (u	Settling s) Time (us)		
	Disable	0, 0000	0.0000	0.0000	0.2	0, 075		
XPS Cen X	Disable	⊐ 0.0000	þ.0000	þ.0000	0,2	□ 0₊075 □		
	Disable	0, 0000	0.0000	0.0000	0.2	0.075		
XPS Cen Y	Disable	⊐ 0.0000	0.0000	0.0000	0,2	a 0,075 a		
	Disable	0, 0000	0.0000	0.0000	0. 2	0, 075		
XPS Sam Z	Disable	⊐ 0.0000	þ.0000	þ.0000	0,2	■ 0,075 ■		
	Disable	0.000	0.000	0,000	0.2	0, 075		
XPS Omega	Disable	⊐ 0.000	þ.000	þ.000	0,2	■ 0,075 ■		
	Disable	0.000	0.000	0,000	0. 2	0,075		
GP Omega	Disable	□ 0.000	0.000	0.000	0,2	■ 0,075 ■		

Electro Standards Laboratories

GPIO2, pin12, Pulse: 1 µs pulse with 5V peak voltage is sent for every time interval

🗙 profileMove.adl	
XPSProfileMc	ove
<pre># Profile points 2000</pre>	Current 0
# Output pulses 2000	Actual O
Move mode Absolute	
Pulse range: Start 1	End 2000
Time mode Fixed 🖃	
Fixed time per point 1.000	Plot time 📃 🛚
Acceleration time 0.500	면More
Maug avrig? Cu	nnent Dec Diete
	1.8525 P
XPS Cen Y ► ■	0.2424 1
XPS Sam Z <mark>№ ⊐</mark>	0.0473 🗳
XPS Omega <mark>№ ⊐</mark>	0.000 🗳
GP Omega <mark>∾</mark> ⊒	0.000 🖪
	<u>₽</u>
	<u>₽</u>
	<u><u></u></u>
Command State	Status
Build Build Done	Indefined
Message -	
Execute Execute Done I	Indefined
Message à	
Abort Abort!	
Readback Readback Done I	Indefined
Message	

Detectors with little/no dead time

Struck multichannel scaler (SIS3820)

_ 🗆 📈 SIS38XX.adl SIS3820/3801 MCS Control 16TEST1:SIS1: Start Stop Combined Plots 뫄 Acquire Erase/Start Enase Individual Plots 1-8 뫄 Individual Plots 9-16 뫄 **Done** Status Individual Plots 17-24 뫄 1.25 Elapsed time Individual Plots 25-32 뫄 0.000 Preset time 2048 Max. # of channels 5,000e-001 Dwell time distance in the set of 50 Ext. prescale Current channel 50 External Channel advance source Disable 💷 Wait for client Count on start Done 📮 Client Wait Software chan. advance Advance Ð Asyn record Int, clock - Channel 1 source Low/Off - User output/LED Connected SNL Status MUX output(1-3 SIS3820 Model MCS Acquire mode 0x111 Firmware Mode 3 Input mode 🗐 Output mode Mode 3 Output polarity Normal Disable 💶 LNE output stretcher Inverted = LNE output polarity 0,0000e+000 LNE output delay 1.0000e-006 LNE output width Passive Passive Read rate Read

Fly scan client

Diptera

True flies are insects of the order *Diptera*, the name being derived from the Greek *di* = two, and *ptera* = wings

74 Diptera - A real program for scanning imaginary stages	
10000	SCAN CONTROL Stage Rel. min. Step size Rel. max. Points Fly axis TEST Y
	Step axis TEST Z -0.100 0.0040 0.100 51 Scan directory Select directory before scan Scan no. 001 Browse
8000 -	COUNT TIME (sec) 0.020 START SCAN Fly y Fly z
7000 -	CENTERING CONTROL Δω y at ω- y at ω0 y at ω+ x correction y correction
ц те 6009	Enable 6.0 Final target position ->
5000 -	INTENSITY CONTROL Active counter Scale factor Data type2D scaling
4000 -	I(signal) Beamstop diode — x 1000 Counts — 64
3000	
2000 -0.20 -0.15 -0.10 -0.05 0.00 0.05 Fly axis: XPS Sam Z	POSITION CONTROL Active element Minimum Center Maximum Width Horizontal axis XPS Sam Z -0.1205 -0.0615 -0.0025 0.118
O O + C B B C Overlay 2D Grid Difference Overlay 2D Grid Overlay 2D	Vertical axis Counts
FILE CONTROL Current Scan File W:/16idb/2017-1/fScan_042.npz Load Data Save ASCII 2D Slice Current Slice Image index 25	Overlays Imaging Alignment Quit

Written in Python 2.7 using Tkinter UI and PyEpics Independent controller, viewer, data/file manipulation

Manage pulses from multiple sources

softGlue

x softGlueAlladi		The second s				
16TEST1:soft6lue:						
	2	DI DICHAR-S Q	e start 🔳	1	DI WOW-L	
	actor*	192399 640J		2		
	= reset					
	-	UN Decision	•1 🗾	1 ····	DI WOW-2	
	1	LOHD PRESET		pulse_out		
	2	255		eset		
	-	DN DECKAR-3 19	- phutter_open	= shutter	DH UNCOV-2	
	= sotors	LOND PRESET		= clock	CLEAR COURTS 1068777021	
sptart	Feset			eset		
pig_step	2	INI beaters 10	- inutter_close	- delta	DI WOW-4	
	antor +	LOND PRESET		E clock		
	= reset	421		eset		
	= eotor_on	· ONI DUDANE 10	• big_step			
	= sotors	- RESET N			D RT 0	
	= reset	<u>µ6</u>		start	-2 cuere	
	-	INI Dates 10	•			
s potor_on	× .	HESET H				
shutter_on	1				D SET 0 phutter_on	
	1	1 (N (DUANS 10)	• <u> </u>	a French a	- <u>2 ciow</u>	
		HESET H		1		
	-			protter_opent		
Int set	1			a librature close	B BH-3	
		HESET H	1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	a Frendta 1	200-	
	= [1]		1	aleate shutter		
	1			a latart o	(Pre)	
	SIL	1		a Pesets	200	
					Etazi at	
	-		-	8 MHz Clock		
	#Si	nals In Use:14 #Re	maining:1		TOTAL OF A	
11	117		17 17 172		- 33 #	
2 · · · · · · · · · · · · · · · · · · ·	*18 ·	a a pulse,out	-18 = = 340			
3 • 3 • 3	** 19 •	<u> </u>		÷ i i		
4 • ***	20					
	21		21 # 37		- 37 -	
7 - 7	22 1		- 22 - 38		38 -	
8 1 3 3	= 24 01			<u> </u>		
9 • • • • • • • • • •	# 25 •		-0 25 # 4410	÷ 🗾 🗄	• 41 «	
** 10 • 10 **	≈ 26 ●°		€ 26 ≈ 942 €			
	27		27 - 4430	0		
	28		28 444		44 **	
14 14 14 14 14 14 14 14 14 14 14 14 14 1	> 30 .		-0 30 × 446 0			
15 15 . Trigger pulse	a 31 •		-0 31 × # 470	÷ I I		
16 01 Protect	≡ 32 ●°		● 32 = -● 48 ●	<u> </u>		

Two basic configurations: Step: every Nth pulse after accel XPS: one pulse in, one pulse out

Pulse conditioning, line drivers

Pulse Research Lab

PRL-444 4-channel 50 Ω output TTL Line Driver

 $\label{eq:prl-414B} PRL-414B \\ 1:4 \ fanout \ 50 \ \Omega \ TTL \ Line \ Driver$

Useful for the Newport XPS, for example, as it can pull up the open collector outputs

Useful for triggering PILATUS, for example, as it can drive the 50 Ω trigger input

From possible to practical

Google closest bar to Argonne National Lab \rightarrow Q Bar and Grill on Cass Ave

Routine 2D sample mapping \rightarrow practical

TWG application – KB focusing

Curvature

Diptera – KB mirror characterization

2D image gallery – heterogeneous samples

From thousands . . .

Fussell and Tschauner, unpublished

to hundreds . . .

Samudrala et al., Materials 8, 2054-2061 (2015)

... to tens and ones of microns

Bai and coworkers, unpublished

J.28 -0.27 -0.26 -0.25 -0.24 -0.23 -0.22 Fly axis: XPS Cen Y

Not shown today . . .

- Adding simultaneous high-frequency x-ray diffraction with PILATUS
- Integrated beamstop diode for combined transmission/XRD measurements
- XDI software (Ross Hrubiak) for analyzing 2D XRD maps
- Using fly scan approach for single crystal XRD
- High resolution (ms) synchronization of x-ray shutter with motor position
- Automated sample centering with visual reinforcement
- Built-in peak fitting for characterizing beam size/focal spot

Almost done . . .

HPCAT staff, especially

- Eric Rod (design, manufacturing, and integration)
- Arun Bommannavar (some EPICS and controls integration)
- Guoyin Shen (continued support for project and managing the overall scope)

CARS staff, especially

- Matt Newville (primary developer of PyEpics)
- Mark Rivers (extensive support, ideas, help, and advice on several aspects)

BCDA staff, especially

- Tim Mooney (primary developer of softGlue)
- Kurt Goetze (BC-037 mod made fly scan possible for open-loop steppers)

Several other staff members and users with help, advice, testing, etc.

This work was performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974, with partial instrumentation funding by NSF. The Advanced Photon Source is a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.