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USE CASES



FUTURE DATA PROCESSING ARCHITECTURE

4http://cbs.fas.harvard.edu/usr/mcmains/CBS_MRI_Quality_Control_Workshop.pdf



VERIFICATION

 Verifying PVs before start of experiment
 Verifying collected hdf data file structure
 Verifying collected hdf data

– Frame mean value within limits
– Frame standard deviation within limits
– Frame mean value and mean of means does not exceed delta

32-ID Tomography, Transmission x-ray microscopy, Radiography, 
Phase contrast imaging

5



BLOCKED PROJECTIONS

 For some samples certain projections are blocked, and the characteristic of the 
corresponding data frames is the same as ‘data dark’.
 By applying characteristic (limits) for ‘data’, the blocked frames can be found in a 

data file and reported. The indexes of blocked frames are used by reconstruction 
scripts.

32-ID Tomography, Transmission x-ray microscopy, Radiography, 
Phase contrast imaging
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DETECT SATURATION

 The intensity of single points may exceed a limit (saturate)
 If there are many of such points, the experiment may be said unsuccessful
 The verifier can detect this condition in a data set
 With a new detector it may be possible to monitor the data in a real time, so the 

experiment can be stopped on bad quality

1-ID High-energy x-ray diffraction
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FUTURE DATA PROCESSING ARCHITECTURE
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VERIFIERS



VERIFIERS

 PV – verifies settings of process variables; can be run before experiment, as well 
as periodically during experiment
 Quality results verifiers

– Data verifier – verifies quality of experiment data in a file (hdf, ge, tiff)
– Monitor – monitors directory for experiment data files, and runs data verifier 

on discovery
– Structure – used for hdf type files. Verifies that the tags are in sync with 

gathered data.
 Real-time – verifies quality of experiment data while experiment is collecting data
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QUALITY CHECKS

 Functions targeted to validate specific experiment data
 The checks are configured
 Easy to add quality check function to the framework
 Check on each frame (ex: mean value expected in certain bounds)
 Check on the collected so far frames (ex: number of saturation points exceeded 

limit)
 The same function can be used to assess experiment data taken by different 

detector by using different limits
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CONFIGURATION EXAMPLE
 'pv_file' = /home/beams/USR32IDC/.dquality/32id_nano/schemas/pvs.json
 'limits' = /home/beams/USR32IDC/.dquality/32id_nano/schemas/limits.json
 'quality_checks' = 

/home/beams/USR32IDC/.dquality/32id_nano/schemas/quality_checks.json
 'time_zone' = America/Chicago
 'extensions' = .hd5, .HD5, .hdf5, .HDF5, .h5, .H5
 #real-time verifier
 'feedback_type' = console
 'detector' = BBF1
 'detector_basic' = cam1
 'detector_image' = image1
 'no_frames' = 20 15



PV.JSON
{"S:SRcurrentAI" : {

"greater_than" : 60.0,
"less_than" : 102.0 },

"ID32ds:Energy.VAL" : {
"greater_than": 5.0, 
"less_than" : 30.0}, 

"ID32us:Gap.VAL" : { 
"greater_or_equal" : 3.0, 
"less_or_equal" : 50.0},

"32ida:BraggEAO.VAL" : {  
"greater_or_equal" : 5.0, 
"less_or_equal" : 25.0  } }
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LIMITS.JSON
{  "data" : {

"mean" : {
"low_limit" : 400,
"high_limit" : 600    }, 

"stat_mean" : { 
"low_limit" : -150, 
"high_limit" : 150      },

"std" : {
"low_limit" : 150, 
"high_limit" : 200       }   }  }
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QUALITY_CHECKS.JSON

{ “data” : 
{ "QUALITYCHECK_MEAN" : ["STAT_MEAN"], "QUALITYCHECK_STD" : []},
“data_white” :
{ "QUALITYCHECK_MEAN" : [], "QUALITYCHECK_STD" : []},

“data_dark” : 
{ "QUALITYCHECK_MEAN" : [] }
}
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VERIFICATION RESULTS

 The results are provided in a text file. It lists the result for each frame, and for 
each check method.
 The output of verification is a list of frame indexes that did not pass the quality 

checks. The list can be used as an input to subsequent calculations.
 The real-time verifier provides immediate feedback. Currently the user can 

choose console and log file. There are plans to add live feedback on the 
experiment status web page.

19



HOW TO USE IT

 Under Documentation Examples tab there are code snippets for each verifier.
– The examples are run with the assumption that a configuration file exists in a 

folder defined by “instrument”
 The github contains another suite of examples in a check.py and check_rt.py

files
– dquality.pv.verify(conf)
– dquality.monitor.verify(conf, folder, int(num_files))
– dquality.data.verify(conf, fname)
– dquality.hdf.verify(conf, fname)
– dquality.realtime.real_time.verify(conf, report_file, sequence)
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LIVE IMAGE FEED



LIVE IMAGE FEED

 Uses Channel Access plugin
 Uses pyepics
 It provides a high level python API to retrieve image data at the time it is 

recorded
 User needs to write defined methods in an adapter.py file and define Area 

Detector prefixes in a configuration file
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ADAPTER

Acts as a link between feed and consuming application
Has three methods that need to be implemented:

– start_process: it parses arguments, and starts the consuming 
process. Passes in the queue on which the frames are received.

– parse_config: reads configuration and sets required variables. Since 
the configuration is specific for the application, it is handled in the 
adapter.

– pack_data: encapsulates the frame into object defined by a 
consuming application.
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DESIGN

Epics The Epics can be replaced by other software, ex. Tim Madden’s server
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ADAPTER FOR REAL-TIME VERIFIER

 https://github.com/bfrosik/data-quality/blob/master/dquality/realtime/adapter.py

25
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LINKS

 https://github.com/bfrosik/data-quality
 http://data-quality.readthedocs.org/
 http://cbs.fas.harvard.edu/usr/mcmains/CBS_MRI_Quality_Control_Workshop.pdf
 bfrosik@anl.gov

 Contact Barbara Frosik or Nicholas Schwarz for assistance in employing verifier 
on your beamline 
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www.anl.gov

QUESTIONS?
THANK YOU FOR YOUR ATTENTION
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