
VERIFIER OVERVIEW, IMAGE FEED DESIGN, EXAMPLE APPLICATION

DATA QUALITY
VERIFICATION TOOLS

erhtjhtyhy

BARBARA FROSIK
Principal Software Engineer
Scientific Software Engineering & Data Management
Advanced Photon Source
Argonne National Laboratory

March 20, 2017

In collaboration with beamline 32-ID scientists
Francesco De Carlo
Doga Gursoy
et al

THANK YOU

 Francesco De Carlo, Doga Gursoy, Rafael Vescovi, Vincent De Andrade; Jun-
Sung Park, John Hammomds, Nicholas Schwarz, Arthur Glowacki, Mark Rivers,
Tim Madden, Sinisa Veseli, Tekin Bicer
 Thank you for great ideas, help, support, consultations.

2

USE CASES

FUTURE DATA PROCESSING ARCHITECTURE

4http://cbs.fas.harvard.edu/usr/mcmains/CBS_MRI_Quality_Control_Workshop.pdf

VERIFICATION

 Verifying PVs before start of experiment
 Verifying collected hdf data file structure
 Verifying collected hdf data

– Frame mean value within limits
– Frame standard deviation within limits
– Frame mean value and mean of means does not exceed delta

32-ID Tomography, Transmission x-ray microscopy, Radiography,
Phase contrast imaging

5

BLOCKED PROJECTIONS

 For some samples certain projections are blocked, and the characteristic of the
corresponding data frames is the same as ‘data dark’.
 By applying characteristic (limits) for ‘data’, the blocked frames can be found in a

data file and reported. The indexes of blocked frames are used by reconstruction
scripts.

32-ID Tomography, Transmission x-ray microscopy, Radiography,
Phase contrast imaging

6

DETECT SATURATION

 The intensity of single points may exceed a limit (saturate)
 If there are many of such points, the experiment may be said unsuccessful
 The verifier can detect this condition in a data set
 With a new detector it may be possible to monitor the data in a real time, so the

experiment can be stopped on bad quality

1-ID High-energy x-ray diffraction

7

FUTURE DATA PROCESSING ARCHITECTURE

8

feed verifier

converter

converter

analyzer

analyzer

VERIFIERS

VERIFIERS

 PV – verifies settings of process variables; can be run before experiment, as well
as periodically during experiment
 Quality results verifiers

– Data verifier – verifies quality of experiment data in a file (hdf, ge, tiff)
– Monitor – monitors directory for experiment data files, and runs data verifier

on discovery
– Structure – used for hdf type files. Verifies that the tags are in sync with

gathered data.
 Real-time – verifies quality of experiment data while experiment is collecting data

10

11

handleraggregate

Experiment
data

frames

results

Data
verifier

hdf, ge, tiff

Aggr res

Image
feed

frames
real-time

Channel
Access

VERIFIER ARCHITECTURE

12

Experiment
data1

Data
verifier1

hdf, ge, tiff

Experiment
data2

Data
verifier2

hdf, ge, tiff

Monitor
monitored
folder

observe

MONITORING FILE SYSTEM

13

handleraggregate

frames
results

aggregated res

Image
feed

frames
real-time

Channel
Access

app

LIVE FEED USAGE

QUALITY CHECKS

 Functions targeted to validate specific experiment data
 The checks are configured
 Easy to add quality check function to the framework
 Check on each frame (ex: mean value expected in certain bounds)
 Check on the collected so far frames (ex: number of saturation points exceeded

limit)
 The same function can be used to assess experiment data taken by different

detector by using different limits

14

CONFIGURATION EXAMPLE
 'pv_file' = /home/beams/USR32IDC/.dquality/32id_nano/schemas/pvs.json
 'limits' = /home/beams/USR32IDC/.dquality/32id_nano/schemas/limits.json
 'quality_checks' =

/home/beams/USR32IDC/.dquality/32id_nano/schemas/quality_checks.json
 'time_zone' = America/Chicago
 'extensions' = .hd5, .HD5, .hdf5, .HDF5, .h5, .H5
 #real-time verifier
 'feedback_type' = console
 'detector' = BBF1
 'detector_basic' = cam1
 'detector_image' = image1
 'no_frames' = 20 15

PV.JSON
{"S:SRcurrentAI" : {

"greater_than" : 60.0,
"less_than" : 102.0 },

"ID32ds:Energy.VAL" : {
"greater_than": 5.0,
"less_than" : 30.0},

"ID32us:Gap.VAL" : {
"greater_or_equal" : 3.0,
"less_or_equal" : 50.0},

"32ida:BraggEAO.VAL" : {
"greater_or_equal" : 5.0,
"less_or_equal" : 25.0 } }

16

LIMITS.JSON
{ "data" : {

"mean" : {
"low_limit" : 400,
"high_limit" : 600 },

"stat_mean" : {
"low_limit" : -150,
"high_limit" : 150 },

"std" : {
"low_limit" : 150,
"high_limit" : 200 } } }

17

QUALITY_CHECKS.JSON

{ “data” :
{ "QUALITYCHECK_MEAN" : ["STAT_MEAN"], "QUALITYCHECK_STD" : []},
“data_white” :
{ "QUALITYCHECK_MEAN" : [], "QUALITYCHECK_STD" : []},

“data_dark” :
{ "QUALITYCHECK_MEAN" : [] }
}

18

VERIFICATION RESULTS

 The results are provided in a text file. It lists the result for each frame, and for
each check method.
 The output of verification is a list of frame indexes that did not pass the quality

checks. The list can be used as an input to subsequent calculations.
 The real-time verifier provides immediate feedback. Currently the user can

choose console and log file. There are plans to add live feedback on the
experiment status web page.

19

HOW TO USE IT

 Under Documentation Examples tab there are code snippets for each verifier.
– The examples are run with the assumption that a configuration file exists in a

folder defined by “instrument”
 The github contains another suite of examples in a check.py and check_rt.py

files
– dquality.pv.verify(conf)
– dquality.monitor.verify(conf, folder, int(num_files))
– dquality.data.verify(conf, fname)
– dquality.hdf.verify(conf, fname)
– dquality.realtime.real_time.verify(conf, report_file, sequence)

20

LIVE IMAGE FEED

LIVE IMAGE FEED

 Uses Channel Access plugin
 Uses pyepics
 It provides a high level python API to retrieve image data at the time it is

recorded
 User needs to write defined methods in an adapter.py file and define Area

Detector prefixes in a configuration file

22

ADAPTER

Acts as a link between feed and consuming application
Has three methods that need to be implemented:

– start_process: it parses arguments, and starts the consuming
process. Passes in the queue on which the frames are received.

– parse_config: reads configuration and sets required variables. Since
the configuration is specific for the application, it is handled in the
adapter.

– pack_data: encapsulates the frame into object defined by a
consuming application.

23

24

DESIGN

Epics The Epics can be replaced by other software, ex. Tim Madden’s server

Area
Detector Feed Consuming

Application

Frames, PVs

Q

Enqueue
Frames

Dequeue
Frames

ADAPTER FOR REAL-TIME VERIFIER

 https://github.com/bfrosik/data-quality/blob/master/dquality/realtime/adapter.py

25

https://github.com/bfrosik/data-quality/blob/master/dquality/realtime/adapter.py

LINKS

 https://github.com/bfrosik/data-quality
 http://data-quality.readthedocs.org/
 http://cbs.fas.harvard.edu/usr/mcmains/CBS_MRI_Quality_Control_Workshop.pdf
 bfrosik@anl.gov

 Contact Barbara Frosik or Nicholas Schwarz for assistance in employing verifier
on your beamline

26

https://github.com/bfrosik/data-quality
http://data-quality.readthedocs.org/
mailto:bfrosik@anl.gov

www.anl.gov

QUESTIONS?
THANK YOU FOR YOUR ATTENTION

	Data quality�verification tools
	Thank you
	Slide Number 3
	Future data processing architecture
	verification
	Blocked projections
	Detect saturation
	Future data processing architecture
	Slide Number 9
	verifiers
	Verifier architecture
	Monitoring file system
	Live feed usage
	Quality checks
	Configuration example
	Pv.json
	Limits.json
	Quality_checks.json
	Verification results
	How to use it
	Slide Number 21
	Live Image feed
	adapter
	design
	Adapter for real-time verifier
	links
	Slide Number 27

