

Monitoring an IOC’s status
with the “alive” record

July 17, 2014

Dohn Arms
BCDA

Rationale

Issue: Want convenient central resource that lets us see if IOC is
operational, irrespective of subnet boundaries.

Solution: Use centralized heartbeat as failure detection model,
with a record sending UDP heartbeats to database server.

Issue: A database of IOCs that are constantly appearing and
changing will be out of date when manually managed. Want
automatic system of knowing information about IOCs.

Solution: Allow the database server to query an IOC about its
parameters. The IOC has a TCP port open over which it will send
record-specified environment variable, as well as information
relevant to the IOC type.

alive record

Uses a custom network protocol to
talk to the database server.

Has two parts:

● Part that processes according to
normal record rules, sending UDP
heartbeats to the database server.

● Spawned thread that has an
open TCP port, waiting for
information requests (only from
database server).

Heartbeat service
● Frequency set by SCAN rate (default to 10 sec)

● Heartbeat VAL increments when record processes

● Heartbeat UDP packet contents:
– Magic number (for filtering)

– Protocol version (4 currently)

– Incarnation (boot time) and current time

– Heartbeat value

– Flags (currently for info port)

– Information port number

– 32-bit user message MSG

– IOC name

Information Port Service

● Initialized by remote server, by making TCP connection.

● Port number can be specified or automatically assigned.

● If initialization fails, thread terminates, and sets status to
“Inoperable” (status is “Operable” on success).

● Queries only allowed by IP of server heartbeats sent to.

● Record can request a reading with flag, using ITRG

● Record can suppress connections using ISUP, where
connections are denied, with a flag sent indicating this.

Information Port Service

● Information contents

– Protocol Version (4)

– IOC type (currently vxWorks, Linux, and Darwin)

– Total message length

– Data
● For each ENVxx field that is not empty,

there is the variable name and its value
● IOC type specific information

– VxWorks: bootLine
– Linux/Darwin: user, group, and host

Implementing Server

● Heartbeat Processing

– Toss out if magic number is wrong.

– Match version against supported values.

– Find IOC entry, create if needed (if allowed).

– If incarnation has changed (or new), boot has
occurred, reset entry and read IOC information.

– If heartbeat value is lower, toss (out of order packet).

– Record current time as ping time, IOC's measured
time, and user message value.

– If flag bit 1 is set, can't do information read.

– If flag bit 0 is set, try to do information read.

Implementing Server

● Failure determination

– Failure time is determined by SCAN rate and
necessary number of missing heartbeats.

– 60 second failure time with 10 second scan rate
means six missing heartbeats

– Elapsed time is current time – ping time

● Information Reading

– Open TCP port using value from heartbeat

– Read stream until closed (use message size field for
error checking)

– Attach information to IOC record

BCDA server
● Allows any IOC to join

● Currently has around 100 IOCs active

● Design

– Written in C as threaded daemon.

– Database is autobalancing tree, uses many-reader,
single-writer model, preferring the writer.

– Clients access data over TCP port, using API.

– Records IOC state in case of restart.

– Records each boot for every IOC.

– Lets client do failure determination.

BCDA clients
● CGI: http://bcda.xray.aps.anl.gov/cgi-bin/ioc_alive.cgi

● CGI XML: http://bcda.xray.aps.anl.gov/cgi-bin/alivexml.cgi

● Command line: /APSshare/bin/alivedb

● Command Line XML: /APSshare/bin/alivexml

The XML interfaces lets one use an XML parser for loading
the database.

Conclusion

Development location (has HTML documentation):

https://subversion.xray.aps.anl.gov/synApps/alive/trunk/

Future Plans:

● Get it fully released soon as module

● Figure out how to give server code example

● Add notifier mechanism for running a script

https://subversion.xray.aps.anl.gov/synApps/alive/trunk/

