Monitoring an |OC’s status
with the “alive” record

July 17, 2014

Dohn Arms
BCDA

Rationale

Issue: Want convenient central resource that lets us see if IOC is
operational, irrespective of subnet boundaries.

Solution: Use centralized heartbeat as failure detection model,
with a record sending UDP heartbeats to database server.

Issue: A database of IOCs that are constantly appearing and
changing will be out of date when manually managed. Want
automatic system of knowing information about 10Cs.

Solution: Allow the database server to query an |OC about its
parameters. The |IOC has a TCP port open over which it will send
record-specified environment variable, as well as information
relevant to the 10C type.

alive record

Uses a custom network protocol to
talk to the database server. alivefx:alive v 0-9-1

Remote Server

TP Address [164.54.53.173 Port pe7s

Has two parts:

Heartbeats
- Part that processes according to | i) i nan s

normal record rules, sending UDP Remote Information Reading

heartbeats to the database server. RS Opcr-cb) c Port, 38613
Request Read Idle ~| Suppress off |

» Spawned thread that has an Environment Variables
agn 1 ARCH 6 LOCATION

open TCP port, waiting for 2 i a

information requests (only from —— +

database server). 5 eTeER 10]

Heartbeat service

* Frequency set by SCAN rate (default to 10 sec)
 Heartbeat VAL increments when record processes
 Heartbeat UDP packet contents:

- Magic number (for filtering)

- Protocol version (4 currently)

- Incarnation (boot time) and current time
- Heartbeat value

- Flags (currently for info port)

- Information port number

- 32-bit user message MSG

- 10C name

Information Port Service

Initialized by remote server, by making TCP connection.
Port number can be specified or automatically assigned.

If initialization fails, thread terminates, and sets status to
“Inoperable” (status is “Operable” on success).

Queries only allowed by IP of server heartbeats sent to.
Record can request a reading with flag, using ITRG

Record can suppress connections using ISUP, where
connections are denied, with a flag sent indicating this.

Information Port Service

 |nformation contents

- Protocol Version (4)

- |OC type (currently vxWorks, Linux, and Darwin)
- Total message length

- Data

* For each ENVxx field that is not empty,
there is the variable name and its value

» |OC type specific information

- VxWorks: bootLine
- Linux/Darwin: user, group, and host

Implementing Server

 Heartbeat Processing

Toss out if magic number is wrong.
Match version against supported values.
Find IOC entry, create if needed (if allowed).

If incarnation has changed (or new), boot has
occurred, reset entry and read IOC information.

If heartbeat value is lower, toss (out of order packet).

Record current time as ping time, I0C's measured
time, and user message value.

If flag bit 1 is set, can't do information read.
If flag bit O is set, try to do information read.

Implementing Server

 Failure determination

- Failure time is determined by SCAN rate and
necessary number of missing heartbeats.

- 60 second failure time with 10 second scan rate
means six missing heartbeats

- Elapsed time is current time — ping time
* |Information Reading

— Open TCP port using value from heartbeat

- Read stream until closed (use message size field for
error checking)

— Attach information to IOC record

BCDA server

* Allows any IOC to join
e Currently has around 100 I0Cs active
e Design
— Written in C as threaded daemon.

- Database is autobalancing tree, uses many-reader,
single-writer model, preferring the writer.

- Clients access data over TCP port, using API.
- Records I0C state in case of restart.

- Records each boot for every IOC.

— Lets client do failure determination.

BCDA clients

CGl: http://bcda.xray.aps.anl.gov/cgi-bin/ioc_alive.cgi

CGI XML: http://bcda.xray.aps.anl.gov/cgi-bin/alivexml.cgi
Command line: /APSshare/bin/alivedb
Command Line XML: /APSshare/bin/alivexml

The XML interfaces lets one use an XML parser for loading
the database.

Conclusion

Development location (has HTML documentation):
https://subversion.xray.aps.anl.gov/synApps/alive/trunk/

Future Plans:
» Get it fully released soon as module
* Figure out how to give server code example

* Add notifier mechanism for running a script

https://subversion.xray.aps.anl.gov/synApps/alive/trunk/

