## **Bimorph Mirror Tuning**

Bimorph mirrors, i.e. adaptable optics mirrors, are becoming a common optics element on synchrotron beamlines. **Once** properly tuned (meaning, once the proper settings for focusing have been established) they focus beautifully. However, said "**once**" may require some effort. These are not "plug and play" devices.

Main advantage: Unlike traditional mirrors with mechanical benders, where the user gets one (or, at most, two) "knob" to adjust the focusing, bimorph mirrors come with many (commonly 16, can be more) "knobs" to play with. Thus, many more degrees of freedom, to get things right.

Main problem: Lot's of "knobs "to play with, many more ways to get things wrong.

The results presented here are from the ChemMatCARS beamline. Work mostly done by

Mati Meron, ChemMatCARS Binhua Lin, ChemMatCARS Yu-Sheng Chen, ChemMatCARS

With additional help from

Irina Kosheleva, BioCARS Jan Ilavsky, APS

## Background

During the decade 2000-2010 the ChemMatCARS (sector 15ID) beamline did operate using Si mirrors from Oxford (SESO). As part of an upgrade, in 2010, the mirrors were replaced by a new set, from Accel (SESO). This set includes:

```
1<sup>st</sup> mirror – 16-element bimorph, vertically focusing
```

```
2<sup>nd</sup> mirror – Si flat
```

```
Slope errors 0.6-0.7 µrad, roughness 2.5 Å (maybe☺)
```

(Both mirror sets have 3 stripes, bare fused silica (or Si), Rh and Pt)

Bimorph Mirror side view



Each mirror segment can be bent individually, by applying voltage

 $Curvature = \frac{1}{Radius} = Const * V$ 

Fitting to the mirror test data, as supplied by Accel, yields

 $Const = -5.1*10^{-4} \left( \frac{microradian}{mm*volt} \right)$ 



So, it is just a matter of applying the voltages required to bend the mirror to the proper shape. Only, there are 16 voltages! How to find them? Trial and error?

•Try raising all voltages by the same amount (for uniform bend). Get focusing, but not very good.

•Try tweaking individual voltages, one or two at a time. Still not very good. Sharper peak than what we could get with the old mirror, but lots of structure

So, the simpleminded approach doesn't work well (found out why, later). Time to get systematic.

#### Trial and error outcome

That's about the best before getting serious.



## Mapping slopes



## More mapping slopes

...or, alternatively, using a slit scan. Mathematically, mirror scans and slit scans are equivalent. In reality, slit scans are preferable, being far less sensitive to positioning errors.

To minimize beam footprint on the mirror, the slit should be closed to

 $\approx \sqrt{L\lambda}$ 

where *L* is the slit-mirror distance and  $\lambda$  is the wavelength being used. Closing the slit further than this will increase diffraction broadening.



## A digression

It is a good idea to choose sampling location so as to miss junctions between mirror elements. For constant step size it is a tad challenging, when the elements are not of constant length, but it can be done. For our mirror, at 2mr, the optimal scan is one of 40 points, with a step size (on the mirror) of 12.5mm. See on right.

The resulting parameters are: Scan limit (vertical) = 0.488mm Scan step size = 12.5mm Minimal boundary dist. = 6.247mm



#### Scan example

This was done with detector (Prosilica camera, resolution  $1.96\mu$ ) at 48.5 m from source. The mirrors are at 32.1m (VFM) and 32.9m (VDM). The scan results correspond to radius of 10.5km and rms slope error (both mirrors, combined) of 1.0 $\mu$ r.



## Matrix approach

The standard way to tune a bimorph is the matrix approach. We assume (for good reasons) linear response. Meaning

- The slope at each segment *i* (*i* = 0, 1... *k*-1, where *k* is the number of segments) is constant within the segment, *s<sub>i</sub>*.
- The slopes are combined into a vector **s**, of dimension *k*.
- Similarly, the voltages applied to the segments form a vector **v**, of same dimension.
- A linear relationship of the form Δs = MΔv is assumed, where M is a constant (for a given mirror) matrix.
- Now, if the measured slopes are represented by  $\mathbf{s}_{m}$  while the theoretical slopes required for focusing are  $\mathbf{s}_{f}$ , then the voltage correction needed is  $\Delta \mathbf{v} = \mathbf{M}^{-1}(\mathbf{s}_{f} \mathbf{s}_{m})$ .

That's all nice, but it leads to two questions:

- 1. How does one find the matrix **M**?
- 2. Can it be inverted?

#### Evaluating M:

- 1. Find the "base slope vector"  $\mathbf{s}_0$  consisting of the slopes of all the segments when all the voltages are set to 0. Can either measure one slope per segment or measure a few and average them, in any case the result is a vector of length *k* (seg. number)
- 2. Similar to the above, find the slope vector  $\mathbf{s}_1(\Delta v)$  which obtains with first segment at  $\Delta v$  and the rest at 0. Calculate the vector  $\mathbf{m}_1 = (\mathbf{s}_1(\Delta v) \mathbf{s}_0)/\Delta v$ .
- 3. Repeat (2) for segments 2,...k, to generate the vectors  $\mathbf{m}_2,...\mathbf{m}_k$ .
- 4. Pack the **m** vectors together, creating the  $k \times k$  matrix the columns of which are the vectors  $\mathbf{m}_i$ , i.e.  $\mathbf{M} = (\mathbf{m}_1, \cdots, \mathbf{m}_k)$ . From its construction, for arbitrary voltage vector **v** and the resulting slope vector **s** we've  $\mathbf{s} \mathbf{s}_0 = \mathbf{M}\mathbf{v}$ , thus  $\mathbf{v} = \mathbf{M}^{-1}(\mathbf{s} \mathbf{s}_0)$ .

The process may appear tedious but, in principle, it needs to be done only once. But, turns out there is a problem. The matrix is singular!

This is not accidental. Mathematically it stems from the fact that any slope vector must satisfy the relation  $\sum s_i l_i = \mathbf{s} \cdot \mathbf{l} = 0$ , where  $l_i$  is the length of segment *i* and **I** is the constant vector made of all the segment lengths. Thus, all the different **s** vectors are not independent and the matrix made of them must, indeed, be singular.

In short, it is not an accidental bug, though it certainly is not a useful feature.

## Matrix approach (3)

So:

- Strictly speaking, the inverse M<sup>-1</sup> doesn't exist, so it would appear that the matrix method cannot work.
- But, this problem may be circumvented by generating a "quasi-inverse", using SVD. So, it would appear that the method may work after all.
- But, again, there is no good criterion for selecting a threshold for singular value rejection, and the result may greatly depend on this threshold. So, can it work?

Well, it can be made to work, in a fashion, but it is a bit of a lottery. Sometimes can get very good focus, other times, not so much. The method is not stable and a bit of experimental noise can throw it off.

The noise situation can be somewhat improved by oversampling. Instead of measuring slopes in just *k* locations (one per segment), we can use l > k points (say 2,3,4 per segment). So, the **s** vectors are of length *l* and the matrix **M** (generated same as before) is  $k \times l$ . It is easy to show that in this case the previous formula for **v** is modified to read

$$\mathbf{v} = \left(\mathbf{M}^T \mathbf{M}\right)^{-1} \mathbf{M}^T \left(\mathbf{s} - \mathbf{s}_0\right)$$

where  $\mathbf{M}^{T}$  is the transpose of **M**. This may improve matters, but ( $\mathbf{M}^{T}\mathbf{M}$ ) is still singular.

#### Some results

Y:\chemmat\surf\commissioning\20111113\camera\20111113\_SCAN-17\_SUM(0-\chemmat\surf\commissioning\20111113\camera\20111113\_SCAN-17\_SUM(0-1) 1000-Using Prosilica camera, at 400 48.5m from source. 10keV 800-3×10\* beam. 300 600ріх. 2×10<sup>6</sup> - 200 400 After 2 tries. 1×10<sup>8</sup> 100 200-1000 1200 200 400 600 800 h = hpíx. 200 400 600 800 1000 1200 0 píx. Y:\chemmat\surf\commissioning\20111113\camera\20111113\_SCAN\_21\_SUM(0-\chemmat\surf\commissioning\20111113\camera\20111113\_SCAN-21\_SUM(0-1) 1000-150 1.0×10<sup>8</sup> 800 8.0×104 100 600 ріх. Another try 6.0×10<sup>4</sup> 400--50 4.0×104 200-2.0×10<sup>4</sup> 600 píx. 200 400 800 1000 1200 200 400 600 píx. 800 1000 1200 <u>
</u>

2/21/2013

#### More results

Yet another try. Slightly better.

Some additional (nonmatrix) tweaking. Pretty good, though some structure remains. FWHM about 90µ, though with tails. And, the next time around it was worse.



## Something different – Fit function

The matrix approach may possibly work better, given sufficient effort. However, we decided to try something different, namely:

- Generate an easy to calculate function to model the bimorph mirror.
- > The function should've parameters closely corresponding to the physical parameters of the mirror, i.e. segment voltages.
- > Fit the function to any required mirror profile (or profile increment).

So. definition:

Given *n* intervals delimited by an ordered set of *n*+1 points,  $x_0 < ... < x_n$  and a set of *n* constants,  $c_0 < ... < c_{n-1}$ , construct a function F(x) with the following properties:

- Within each interval  $[x_k, x_{k+1}]$  the function is given by  $F(x) = a_k + b_k x + c_k \frac{x^2}{2}$ , i. with  $c_k$  from the given set and  $a_k$ ,  $b_k$  to be determined.
- ii. F(x) and dF/dx are continuous across  $[x_0, x_n]$ . iii.  $F(x_0) = F(x_n) = 0$ . This is not strictly necessary, but it is convenient and doesn't affect generality.

## Fit Function (2)

Based on the definitions (i-iii) the function can be fully evaluated in terms of the parameters  $c_k$  alone. The result, within any interval  $[x_k, x_{k+1}]$  is:

$$F(x) = c_k \frac{(x - x_k)^2}{2} + \frac{1}{x_n - x_0} \left( (x_n - x) \sum_{0}^{k-1} c_j (x_0 - \overline{x}_j) \Delta x_j + (x_0 - x) \sum_{k}^{n-1} c_j (x_n - \overline{x}_j) \Delta x_j \right)$$

where  $\overline{x}_j = \frac{x_{j+1} + x_j}{2}$  ;  $\Delta x_j = x_{j+1} - x_j$ 

What's actually of more interest, for the fitting, is the derivative of F(x), given by

$$\mathbf{F}'(x) = c_k \left( x - x_k \right) - \frac{1}{x_n - x_0} \left( \sum_{0}^{k-1} c_j \left( x_0 - \overline{x}_j \right) \Delta x_j + \sum_{k}^{n-1} c_j \left( x_n - \overline{x}_j \right) \Delta x_j \right)$$

This can be used to fit to any required slope profile. The fit parameters are the  $c_k$ , of course. They represent local curvatures, thus are proportional to the segment voltages.

# Fit function (3)

It is of some interest to see the shape of F(x) and its derivative for various settings of the  $c_k$  values. The case on right corresponds to all the  $c_k$  being the same.

This to a single nonzero  $c_k$ 

And this to two adjacent curvatures with same value and opposite signs.



# Applying the fit

Focusing to 56m. Mapping the slope:

Feeding the result to the fitting routine, the result is a new set of voltages. Estimated rms slope error ~ $0.6\mu$ r. Note, this is the **combined slope error of both mirrors**.



## ...And the outcome is

Lovely peak, sharp, no structure.

FWHM of ~94 $\mu$ r, but it is even smaller, since the camera is tilted. After correcting for the tilt we get FWHM = 0.66 $\mu$ r, agreeing with the fit estimate.



## By the way...

A valuable feature of a bimorph is its ability to correct for flaws in other optical elements, in our case correct slope errors of the second mirror. This correction, though, necessitates maintaining constant spatial aligment of the elements. Below, on left, is the beam profile after the first mirror was incidentally vertically misplaced by 150µ. On the right is the profile after returning it to position, **with no change in focusing**.

| XBM        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                     |              |        |       |       |        |            |                 |            |        |     |       |        |
|------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------|--------------|--------|-------|-------|--------|------------|-----------------|------------|--------|-----|-------|--------|
| EXIT       | ADJUST | AOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | END PROFI | ES SCAN             | IMAGE        | PARAMs | RESET | ABOUT |        |            |                 |            |        |     |       |        |
|            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                     |              |        |       |       |        |            |                 |            |        |     |       |        |
|            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                     |              |        |       |       |        |            |                 |            |        |     |       |        |
|            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                     |              |        |       |       |        |            |                 |            |        |     |       |        |
|            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                     |              |        |       |       |        |            |                 |            |        |     |       |        |
|            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 성의 소      |                     |              |        |       |       |        |            |                 |            |        |     |       |        |
|            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                     |              |        |       |       |        |            |                 |            |        |     |       |        |
|            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                     |              |        |       |       |        |            |                 |            |        |     |       |        |
|            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                     |              |        |       |       |        |            |                 |            |        |     |       |        |
|            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                     |              |        |       |       |        |            |                 |            |        |     |       |        |
|            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                     |              |        |       |       |        |            |                 |            |        |     |       |        |
|            | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 경험        |                     |              |        |       |       |        |            |                 |            |        |     |       |        |
|            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                     |              |        |       |       |        |            |                 |            |        |     |       |        |
|            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                     |              |        |       |       |        |            |                 |            |        |     |       |        |
|            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                     |              |        |       |       | 1      |            |                 |            |        |     |       |        |
|            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                     |              |        |       |       |        |            |                 |            |        |     |       |        |
|            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | 1.000               |              |        | ma e  | 6 33  |        | -          | 100             |            |        |     |       |        |
| 6          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | 13 (313-0)          |              |        | -     |       |        |            |                 | -          |        | 1   |       |        |
|            |        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | State 1   |                     |              |        |       |       |        |            |                 |            |        |     |       |        |
|            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                     |              |        |       |       |        |            |                 |            |        |     |       |        |
|            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                     |              |        |       |       |        |            |                 |            |        |     |       |        |
|            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                     |              |        |       |       |        |            |                 |            |        |     |       |        |
|            | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                     |              |        |       |       |        |            |                 |            |        |     |       |        |
|            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                     |              |        |       |       |        |            |                 |            |        |     |       |        |
|            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                     |              |        |       |       |        |            |                 |            |        |     |       |        |
|            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                     |              |        |       |       |        |            |                 |            |        |     |       |        |
|            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                     |              |        |       |       |        |            |                 |            |        |     |       |        |
|            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                     |              |        |       |       | C:\Pro | igram File | s\Xbm\F         | Profiles\F | _V221. | txt |       | 631,48 |
| -PROFILES  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                     |              |        |       |       |        |            |                 |            |        |     |       |        |
| DIR        | V      | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                     |              |        |       |       |        |            |                 |            |        |     |       |        |
| AOI Prof.  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 400       |                     |              |        |       |       |        | 14         |                 |            |        |     |       |        |
| Line Prof. |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | 120                 | [            |        |       | 1     |        | 1          | 1               |            | 1      |     |       |        |
| Positio    | n      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | 100                 |              |        |       |       |        |            | · · · · · · · · |            | 1      |     |       |        |
| 1059.780   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | 80                  |              |        |       |       |        |            | +               |            | +      |     |       |        |
| FW/HM      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | 60                  | ļ            |        |       |       |        |            |                 |            |        |     |       |        |
| 84.665     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40        | $\mathcal{N}^{(1)}$ |              |        |       |       |        |            |                 |            |        |     |       |        |
|            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                     |              |        |       |       |        |            |                 |            |        |     |       |        |
|            |        | The second |           |                     |              |        |       |       |        |            |                 |            |        |     |       |        |
|            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | 0                   | - manual re- | 20     | 0     | 40    | 0      | 60         | 0               |            | 300    |     | 1.000 |        |



#### Not all roses

Focusing of the silica stripe not as good as of the Rh and Pt stripes. Visual inspection indicates structure. Radiation damage? If anybody knows of something related, we'll be glad to hear.

