
tomoRecon: High-speed tomography
reconstruction on workstations using

multi-threading
Mark Rivers

GeoSoilEnviroCARS, Advanced Photon Source

University of Chicago

•  Time to collect tomography datasets has decreased rapidly
•  New fast CMOS detectors, such as the PCO Dimax

–  2016 x 2016 resolution
–  1279 frames/s at full resolution
–  4502 frames/s at half resolution (1008 x 1000)
–  Full [2016, 2016, 1200] dataset in 1 second with pink or white beam!

•  This (or similar) detectors now in use at Swiss Light Source, APS,
ESRF, Spring-8

•  These speeds are into on-board camera memory
–  It does take several minutes to read the camera memory into the computer

•  Clearly a need for high speed tomography reconstruction to keep up
with data collection rates.

Motivation: Faster Detectors

pco.dimax camera

•  Ability to reconstruct faster than data collection
–  View results from previous sample while next one is still

collecting
–  Rapid feedback on data collection parameters
–  Feedback to guide the course of the study
–  Prevents backlog of data to be processed at the end of a run

•  Ability to reconstruct on “affordable” computers
–  Most synchrotron beamlines reconstruct on site, users take

reconstructed data home
–  Desirable for them to be able to re-do reconstruction at their

home institutions
•  Change the rotation center
•  Change ring artifact removal,
•  Missing or lost files

– Should run on Windows, Linux, or Mac

Motivation: Goals for Reconstruction at
Tomography Facilities

•  Computers have changed remarkably in last 2-3 years
•  Memory

–  Now very inexpensive
–  I recently upgraded my PC from 48 GB to 96 GB for $500!
–  So memory is $10/GB; 96 GB is less than $1,000

•  Multiple CPU cores
–  CPU speeds are not increasing very much
–  Rather manufacturers are adding multiple cores to each CPU chip
–  Systems with 8 or 12 cores are now less than $3,000

•  Most tomography reconstruction software does not exploit these
advances

Motivation: Faster Computers

Intel six-core processor

Reconstruction Times at Some Existing
Tomography Facilities

Beamline Computer Cost Software Medium dataset Large dataset

(~) Size Time (s) Size Time (s)
APS 2-BM 8-node Linux

cluster
$70,000 Gridrec [1392,

1040,
900]

441 [2048,
2048,
1500]

2642

Swiss Light
Source
TOMCAT

5-node Linux
cluster

$50,000 Gridrec [1024,
1024,
1001]

1 job: 1674
20 jobs: 119

[2048,
2048,
1501]

1 job: 7651
20 jobs: 473

ALS 8.3.2 Windows 7 64-
bit workstation

$7,000 Octopus +
FIJI

[1024,
1024,
1024

no GPU 310
w/ GPU 105

[2048,
2048,
1024]

No GPU 1300
w/GPU 479

APS 13-BM Windows 7 64-
bit workstation

$6,000 Gridrec +
IDL

[1392,
1040,
900]

282 [2048,
2048,
1500]

996

•  Many beamlines use large Linux clusters
•  Running multiple processes w/ MPI (complex; users cannot run at home)

•  Even with those the reconstruction times for large datasets are 6 to 44
minutes

Conventional software is often not taking
advantage of multiple cores!

• Windows task
manager with
existing Gridrec
reconstruction
software at our
beamline
• Only 1 core being
used
• Must be a better
way!

•  tomoRecon: New reconstruction library.
–  Runs multiple slices simultaneously, each in its own thread

(and core)
–  All run in a single process, much simpler than MPI
–  Runs on a single workstation

•  Uses Gridrec for actual reconstruction
–  Very fast FFT-based reconstruction, already used at many

sites
–  With appropriate singogram padding gives identical results

to conventional filtered back-projection (F. Marone et. al
SPIE 2010)

New Approach: Single Multi-threaded
Application

•  Applications written with multiple threads require a
support library that provides:
–  Support for creating and operating on threads
–  Support for mutexes to prevent conflicts when threads need

to access shared data
–  Support for a message passing system for passing data

between threads
–  Support for events for signaling between threads
–  Support for date and time operations

•  Ideally this support should operate transparently across
multiple operating systems

Software needs for multi-threading

•  EPICS is a control system toolkit in use at many synchrotrons both to run the
accelerator and the beamlines

•  EPICS has exactly the cross-platform library required for support for multi-
threaded applications

•  Run on Linux, Windows, Mac OSX, many others
•  tomoRecon uses libCom

EPICS libCom

EPICS API Functions used
epicsThread epicsThreadCreate, epicsThreadGetNameSelf
epicsMessageQueue epicsMessageQueueCreate, epicsMessageQueueTrySend,

epicsMessageQueueTryReceive, epicsMessageQueueReceive,
epicsMessageQueueDestroy

epicsEvent epicsEventCreate, epicsEventSignal, epicsEventWait,
epicsEventDestroy

epicsMutex epicsMutexCreate, epicsMutexLock, epicsMutexUnlock,
epicsMutexDestroy

epicsTime epicsTimeGetCurrent, epicsTimeDiffInSeconds,
epicsTimeToStrftime

tomoRecon C++ class

class tomoRecon {
public:
 tomoRecon(tomoParams_t *pTomoParams,

 float *pAngles);
 ~tomoRecon();
 virtual int reconstruct(int numSlices,
 float *center,
 float *pInput,
 float *pOutput);

 virtual void supervisorTask();
 virtual void workerTask(int taskNum);
 virtual void sinogram(float *pIn,
 float *pOut);
 virtual void poll(int *pReconComplete,
 int *pSlicesRemaining);

•  Single C++ class called tomoRecon
•  545 lines of code, on top of ~800 lines of code in Gridrec

•  Reconstructs a set of slices. Passed
–  Number of slices,
–  Array containing the rotation center for each slice, and
–  Pointer to normalized 3-D input data array
–  Pointer to reconstructed output 3-D data array.

•  Sends one message for each pair of slices to the worker tasks through the “To Do”
message queue

–  Reconstructs two slices per message because Gridrec reconstructs two slices at once, one in
the real part of the FFT, and the other in the imaginary part.

–  Messages contain pointers to the input and output data locations, and the rotation center to
be used for that pair of slices.

•  Worker tasks compute the sinograms from the normalized input data, and then
reconstruct using Gridrec.

–  When reconstruction complete the worker task sends a message to the supervisor task via the “Done
Queue” message queue indicating that those slices are done.

–  The worker task then reads the next message from the “To Do” queue and repeats the process.
•  When supervisor task has received messages for all slices it sets a flag indicating that

the entire reconstruction is complete.
•  Supervisor and worker threads then wait for another event signaling either:

–  Another reconstruction should begin, or
–  tomoRecon object is being deleted, and the threads should exit.

tomoRecon Work Flow

•  Takes the log of data (except for fluorescence tomography data).
•  Optionally does secondary I0 normalization

–  Uses average of values (typically air) at the start and end of each row of the
sinogram.

–  Produces more accurate attenuation values when the beam intensity is changing
with time, or changing between the sample in and out positions due to scintillator
effects.

•  Optionally does ring artifact reduction.
–  Computes the difference between the average row of the sinogram and the low-pass

filtered version of the average row.
–  Difference is used to correct each column of the sinogram.
–  RingWidth specifies the size of the low-pass filtering kernel

•  This is a C++ “virtual function”
–  Can create a derived class that re-implements this function to do sinograms

differently without modifying tomoRecon

tomoRecon::sinogram

•  New version of the Gridrec code.
–  Original Gridrec written in C, used static C variables to pass information

between C functions.
–  Not thread-safe, each thread needs its own copy of such variables.
–  Gridrec was re-written in C++, with all such variables placed in private

class member data.

•  Gridrec was originally written to use the Numerical Recipes FFT
functions four1 and fourn.

–  Previously user wrapper routines that maintained the Numerical Recipes
API, but used FFTW, which is very high performance FFT library. Those
wrapper routines were also not thread-safe, and they copied data, so were
somewhat inefficient.

–  New version of Gridrec has been changed to use the FFTW API directly,
it no longer uses the Numerical Recipes API.

Gridrec

•  Performance tests were done to determine:
1. Reconstruction time as a function of number of threads for in-memory data
2. Reconstruction time as a function of dataset size for in-memory data
3. Reconstruction time, including reading the input file and writing the output file, as a

function of the number of slices reconstructed in each call to tomoRecon.
•  Tests done on Windows 7 tower workstation and a Linux rackmount server

Performance Tests

Computer type Dell Precision T7500 Penguin Relion 1751 Server

Operating
system

Windows 7 64-bit Linux, Fedora Core 14, 64-bit

CPU Two quad-core Xeon X5647, 2.93
GHz
(8 cores total)

Two quad-core Xeon E5630, 2.53 GHz
 hyperthreading, (8 cores, 16 threads
total)

System RAM 96 GB 12 GB

Disk type Two 500 GB 15K RPM SAS disks
RAID 0

Three 300 GB 15K RPM SAS disks
No RAID.

Approximate
cost

$6,000 $5,000

•  Close to ideal performance up to 5-6 threads
•  Windows does not improve much after 7 threads
•  Linux has a minimum at 10 threads, then increases

We’re now using all the cores!

tomoRecon with 1 thread tomoRecon with 8 threads

Performance as a function of dataset size

Dataset size Windows
(8 threads)

Linux (12 threads)

[696, 520, 720] 4.13 ±0.02 4.57 ±0.03

[1392, 1040, 900] 24.8 ±0.5 37.2 ±3.7 (measured 18.6 for 520
slices, insufficient memory for all
slices)

[2048, 2048, 1500] 83.1 ±3.0 127.9 ±29.0 (measured 16.0 ±3.6 for
256 slices, insufficient memory for
all slices)

•  Time for large [2048, 2048, 1500] dataset is only 83 seconds on
Windows with 8 threads.

•  6-40 times faster than existing computing clusters However, does not
include the time to read the input file and write the output file.

Performance Including File I/O vs Chunk Size

•  tomoRecon runs reconstructions in the “background” in
supervisor and worker threads
•  Can thus overlap reading and writing files with reconstruction

using 2 buffers, B1 and B2 in a loop.
•  Each pass through loop reconstructs a set of slices (=chunk)

•  First time read B1 and start it reconstructing in background
•  Then read B2 and wait for the B1 reconstruction to complete.
•  Immediately start reconstructing B2, then write the B1 reconstruction and

read the next B1 input.
•  Waits for the B2 reconstruction to complete, starts B1 reconstructing etc.
•  In the optimal case reconstruction of B2 has just completed when the file

writing of the previous B1 and reading of the next B1 complete.
•  If so, process is entirely limited by the file I/O and the reconstruction

does not slow the process down at all!

Performance including file I/O vs chunk size
Slices
per

chunk

Number
of

chunks

Read
time

Write
Time

Wait for
reconstruction

Total
Time

Total
Required

RAM (GB)

2048 1 32.1 64.3 88.6 187.2 60

1024 2 35.7 64.9 46.0 149.0 44

512 4 38.8 65.1 30.5 137.8 32

256 8 39.5 67.9 14.6 126.0 16

128 16 40.1 67.5 14.3 126.2 12

•  Single Windows workstation using tomoRecon can do complete
[2048,2048,1500] reconstruction, including file I/O, in ~2
minutes.
•  4-20 times faster than existing systems, including large clusters

•  Find optimum value of rotation axis to sub-pixel by entropy minimization
•  tomoRecon reconstructs same slice N times using different rotation center

for each N
•  Done in parallel in multiple threads
•  4 seconds to search 41 center positions, +- 5 pixels in 0.25 pixel steps
•  Do slices near top of sample and bottom of sample to correct for any slight

misalignment of rotation axis and CCD columns

Future plans

•  Integrate pre-processing (normalization to dark
and flat field, zinger removal) either into
tomoRecon or another C++ threaded package, or
IDL with new GPU library.

•  Make an ImageJ front-end to tomoRecon by
using the Java Native Interface (JNI)

•  Reconstruction is only the first step in
tomography data processing. Other steps could
benefit from the same architecture used here if
the code is or can be written in C or C++.

Conclusions

•  tomoRecon allows single workstation to do large-scale
reconstructions previously limited to clusters

•  Fully utilizes large memory and multiple cores of
modern computers

•  tomoRecon source code and pre-built libraries for Linux
and Windows, and Mac available here:
http://cars.uchicago.edu/software/epics/tomoRecon.html

•  IDL front-end software available here:
http://cars.uchicago.edu/software/IDL/tomography.html

Thanks for your attention!!!

