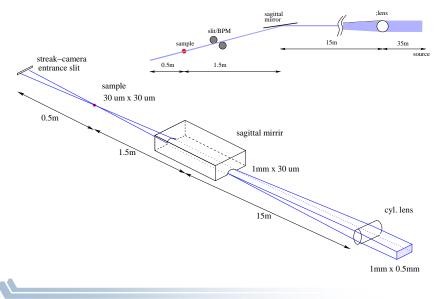


A Novel Hybrid X-Ray Focusing Scheme

Bernhard W. Adams¹


¹Advanced Photon Source Argonne National Laboratory

2012-09-20

Δ

Overview

Why hybrid focusing

Constraints of streak-camera (SC) operation: Entrance slit small in one dimension (25μ m vertical) larger in other dimension (3 mm horizontal) laser focus at sample \rightarrow tight focus at sample SC vacuum vessel and sample environment \rightarrow min. separation 50 cm avoid broadening of diffraction rocking curves

long vertical focal length (> 10m), short horizontal focal length

long-focal mirror challenging due to beam deflection \rightarrow lens

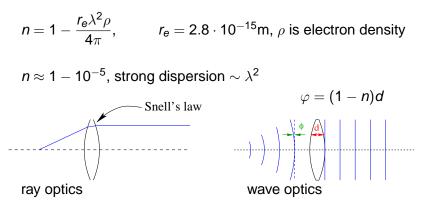
short-focal lens absorbs strongly \rightarrow mirror

also: lens does not suppress harmonics in this geometry

3 Main Components

X-ray lens with continuously variable focal length to adjust focus onto sample and correct for dispersion in energy sca

long focal length \rightarrow only 2 holes (3 walls) can't vary number of holes $N \rightarrow N + 1$ for focal adjustment

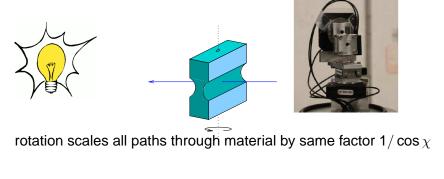

Short sagittal mirror

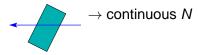
focusing x-ray mirrors are typically expensive not this one, vertical focus makes for short footprint

Slit and beam-position monitor/stabilizer

Variable Lens how does an x-ray lens work?

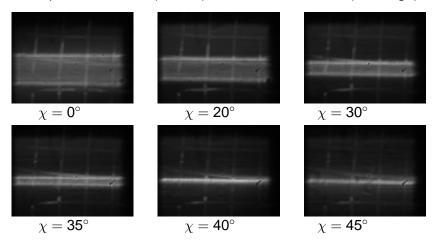
x-ray refractive index:



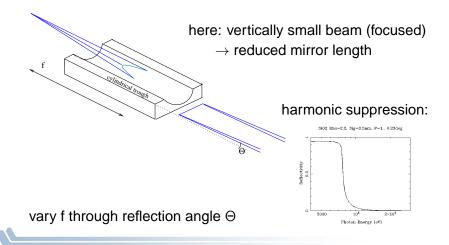

weak refraction \rightarrow many (*N*) lenses (compound refractive lens) vary f through choice of *N*

۵

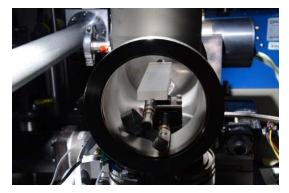
Variable Lens


Long focal length \rightarrow small *N*, here *N* = 2,3 Steps *N* \rightarrow *N* + 1 are too coarse

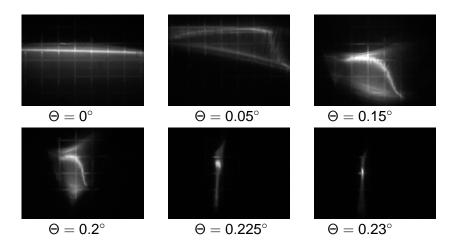
Variable Lens


Example: 1-hole lens (2 walls), f=12 m at 5.465 keV (V K edge)

grid: 200lpi Ni mesh vert focus 35 μ m (~ 0.5 demagnified source)


Small Sagittal Mirror what is a sagittal mirror?

often: grazing incidence \rightarrow long mirror - expensive


Small Sagittal Mirror

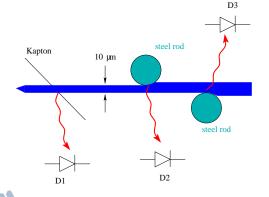
first attempt: use a high-quality cylindrical lens from CVI laser but still insufficient surface quality ($\lambda/4$, 20-10 scratch-dig)) then, got x-ray-polished part: 4mm ROC, 150 mm long, 4250 dollars

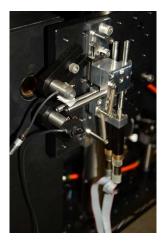
only 20..25 mm x-ray footprint will cut in 3..5 pc.

Small Sagittal Mirror

grid: 200lpi Ni mesh focus: 70 μ m V by 30 μ m (H)

Small Sagittal Mirror

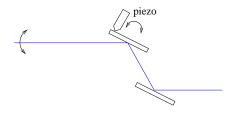

30 μ m (H) imes 70 μ m (V) slit down to 30 imes 30

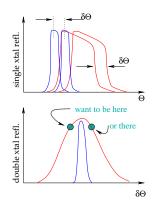

future improvement: aberration corrector (to be patented)

Beam-position Stabilizer (MOSTAB)

We need to keep the focus within 10% of its size, but beamline BPM has μ m resolution, but not long-term stability

High-resolution slit/BPM:


Beam-position Stabilizer (MOSTAB)

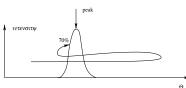

due to the slit, no off-target x-rays can reach the streak camera Problems:

the beamline PID loop works only in a very limited range (in-slit) solution: MOSTAB instead of simple PID loop
due to focusing optics, complicated position(piezo-V) single-parameter feedback loop does not work well multi-point beam stabilizer (future)

Monochromator

Double-crystal monochromators typically have a piezo on the 2nd crystal to adjust parallelity motion of the piezo affects throughput and beam position

Often want to detune a bit to suppress harmonics


what is a MOSTAB

Monochromator Stabilizer

Feedback loop to maintain constant detuning or beam position

Scans monochromator piezo, then returns to:

- left shoulder of peak at typ. 70 %
- right shoulder of peak at typ. 70 %
- constant position

or, with more advanced programming ...

- top of peak
- more complex criteria this talk

history

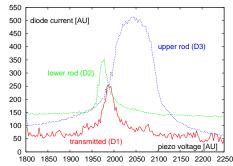
MOSTAB (Monochromator Stabilizer) originally developed at DESY

- 1. generation: all analog Materlik et al., NIM 219, 430 (1984)
- 2. generation: digital, no longer available

http://www.struck.de/dmostab.htm

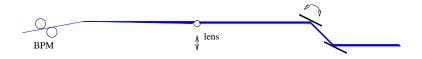
```
new MOSTAB (this talk)
```

up to 8 analog inputs (12 bit res.)


```
up to 4 analog outputs (12 bit res.)
```

up to 4 digital inputs, 4 outputs (counters, veto, gate, etc.)

based on Propeller microcontroller and a few extra components prototype cost ca. \$ 150


program easy to modify

MOSTAB that scans for peak in 1 signal (transmitted, D1), then stabilizes on on other signals (normalized rod signals, D3-D2)

scan piezo (DAC output), acquire 3 signals on ADC inputs (D1 .. D3) find peak in transm. signal, rod signals at peak (d2, d3 to normalize stabilize on D3/d3-D2/d2

future extension: multipoint stabilizer

runs a program in the MOSTAB to control the monochromator piezo and moves the lens to keep the monochromator tuned up

first tests Oct. 2012, use Dec. 2012

Summary

- Why long and short focal lengths
- why hybrid lens/mirror
- focusing to 30 by 70 microns (BPM slits to 30 by 30)
- slit/BPM and MOSTAB to keep beam on target