

An Early View of the Bionanoprobe

Outlines

- Concept of a hard X-ray fluorescence microscope
- Motivation for developing the Bionanoprobe
- System design of the Bionanoprobe
- Preliminary results
- > Summary

Basic Principle of X-ray Fluorescence

C. Fahrni, Current Opinion in Chemical Biology (11), 2007

Schematic of a Hard X-ray Fluorescence Microscope

Schematic NOT to scale

What has been available?

X-ray fluorescence microprobes at Sector 2 optimized for life science applications:

2-ID-D:

>XRF mapping and micro-spectroscopy (determine local oxidation state via micro-XANES)

➢ spatial resolution: 150 nm (high resolution), 400 nm (high flux and microspectroscopy)

>cryogenic capabilities (under commissioning)

2-ID-E:

≻XRF mapping

➢spatial resolution: 250 nm (high resolution), 400 nm (high flux)

➢ fly-scan overview scanning, tomography

Example results from 2-ID-D

P 0-7.52 S 0-3.30 CI 0-3.56 K 0-0.22 Ca 0-3.09 Elemental concentrations $(\mu g \cdot cm^{-2})$ in a whole rat æ 100 pheochromocytoma cell Fe 0-0.04 Cu 0-0.57 Ti 0-3.65 Mn 0-0.02 Zn 0-0.41 transfected with mitochondrionspecific TiO₂ nanoconjugates. 2 µm 13 μm x 12.8 μm, step: 0.2 μm S 3.74-5.57 Ti 0.04-1.76 Inner Membrane Outer Membrane SIZE: For resolution is needed! A higher spatial resolution Mn 0.00-0.04 [Paunesku *et al*. Nano Letters 2 http://micro.magnet.fsu.edu/cells/mitoch ondria/images/mitochondriafigure1.jpg

6

Example results from 2-ID-E

Cyclotela

[de Jonge et al. PNAS 2010]

Why do we need the Bionanopobe?

- High spatial resolution: 30 nm
 Advanced optics; Precise motion control
- Protection from radiation damage

- Automated sample change
- High speed

- 7 zone plates (5-35 keV)
- Piezo stages (<5 nm step)</p>
- interferometer system
- cryogenic environment
- high vacuum
- sample handling robot
- fly-scan mode
- kinematic sample stage for tomography

Bionanoprobe: a scanning X-ray nanoprobe with cryo-capabilities *first* microscope of its kind

Cryogenic capability enables biosamples to be studied in their froze-hydrated state

[O'Toole et al., 1993]

frozen-hydrated platelet, imaged at -160°C chemically-fixed, dehydrated platelet, imaged at room temperature

Schematic of the Bionanoprobe

Optical Assembly

Positioning Stability of Piezo Stages (closed-loop mode)

(results from the Factory Acceptance Test)

- 5-nm incremental steps achieved
- RMS noise (X) < 3.5 nm, RMS noise (Y) < 1.5 nm</p>

200 Hz sampling rate

Detector Modules

Sample Handling Robot

gripper sample cover

sample cartridge

How does the robot work?

Bionanoprobe - Robot 8X real speed

Xradia, Inc, Ca

September, 2011

LS-CAT, IL

Commissioning at room temperature (300 K)

- Beam energy: 10 keV
- White beam slits closed down to 50 μm in horizontal direction
- Zone plate: single zone plate 70-160-7 (N₂ encapsulated)
 - -- outermost zone width (Δr): 70 nm
 - -- focal length: 90 mm
 - -- depth of focus: $\pm \frac{1}{2} \frac{\lambda}{(NA)^2} = \pm 80 \ \mu m$
 - -- theoretical **Rayleigh resolution** (1.22 Δr): 85.4 nm
 - -- theoretical Modulation Transfer Function limit: 35 nm

The exciting moments

XRF imaging of Ni/Cr test patterns at room temperature (300 K)

step size: 50 nm

step size: 35 nm

Ni

Comparison of 2-ID-E and the Bionanoprobe

paraffin embedded Hela cell transfected with TiO₂-nanocomposites and maintained at room temperature

2-ID-E microprobe step-scan step size: 200 nm

dwell time: 2 s/pixel

Bionanoprobe step-scan step size: 50 nm dwell time: 250 ms/pixel

Commissioning at cryogenic temperature

- Beam energy: 10 keV
- White beam slits closed down to 50 μm in horizontal direction
- Zone plate: single zone plate 70-160-7
- Temperature control in the system
- Sample handling in cryogenic conditions

Thermal control for cryogenic conditions

Cryo-sample preparation and transfer

Frozen-hydrated algae cell (<110 K)

- Chlamydomonas reinhardtii

 (single cell green algae)
 sample in its culture medium
- plunge frozen in liquid ethane; transferred below 110 K
- fly-scan mode
 area: 10.5 µm x 10.5 µm
 step size: 35 nm
 dwell time: 250 ms/pixel

XRF tomographic dataset collection

W-tip

rotation -20° -- +20° with a 10° step

2D projection X: 20 μm Y: 30 μm

rotation, center, focus -- 2D scan -- rotation, center, focus -- 2D scan ...

Hela cells: transfected with Fe₃O₄/TiO₂ nanocomposites, chemically fixed, frozen-hydrated

Optical microscope for visualization

Bionanoprobe overview scan (ZP: 70-160-14s)

2D image -- fly-scan mode area: 30 μm x 24 μm step size: 100 nm dwell time: 200 ms/pixel 30° rotation

Tomographic dataset collection: -66° -- + 66°, 3° step each projection: step: 100 nm step,

dwell time: 30, 50 ms/pixel

Data reconstruction

Summary

- The Bionanoprobe has provided us with new capabilities for high resolution studies of cryogenic specimens.
- Cryo-XRF microscopy makes it possible to visualize subcellular structures and to quantify trace elements in a manner close to the nature states of bio-samples without any fixation or dehydration.
- The Bionanoprobe is already reaching its initial performance target.

Acknowledgements

APS:

Advanced Photon Source

Stefan Vogt, Barry Lai, Chris Jacobsen, Joerg Maser, Christian Roehrig, Deming Shu, Lydia Finney, Sophie Gleber, Qiaoling Jin

LS-CAT: Keith Brister, Jay VonOsinski, Michael Bolbat

NORTHWESTERN

UNIVERSITY

Northwestern University: Tatjana Paunesku, Ye Yuan, Gayle Woloschak, Rachel Mak, Junjing Deng

Xradia Inc.: Claus Flachenecker, Benjamin Hornberger

Funded by ARRA: NIH/NCRR High End Instrumentation (HEI) grant (1S10RR029272-01).