
On-the-fly scanning:
Improvements in the EPICS

motor and mca modules

Mark Rivers
University of Chicago

• Traditional step scanning overheads:
– Start and stop motors & mechanical systems
– Arm and read detectors.

• Typically much more efficient to collect data on-the-fly as the motors are
moving.

– Better detectors, more flux with APS Upgrade, don’t waste photons and time
• However, on-the-fly scanning with EPICS has been subject to limitations.

– Typically limited to simple single-motor scans because EPICS did not provide a
way to program motor controllers to perform synchronized motion of multi-axis
controllers.

• Exception to this was the Trajectory Scanning software I wrote for the Newport XPS
and MM4005 motor controllers.

• Not a clean solution: SNL program talking directly to the controller, “behind the back”
of the motor record driver.

• PMAC does have motion control programs – good for fixed, simple geometry
– New solution that incorporates a coordinated motion API in the motor driver layer

• SIS3801 and SIS3820 multi-channel scalers are typically used for collecting
pulse counting data in on-the-fly scans.

– Drivers were previously not able to handle very large arrays (1,000,000 elements
or more) without unacceptable slowing down the IOC response.

– Drivers have been rewritten to eliminate this problem, and to add a number of
significant new features.

Motivation

• Top-level object is the EPICS motor record
– Lots of code has been written to this object:

• spec, IDL and Python classes, etc.
• Next layer is EPICS device support

– Knows about the motor record, talks to the driver
• Lowest layer is EPICS driver

– Knows nothing about motor record, talks to the
hardware

• 3 models of device and driver support have
developed over time

EPICS Motor Support

• Device-dependent device support and driver
support for each controller type

• Communication between device support and
driver is custom for motor code and very limited

• Cannot use other records to talk to driver only
motor record

• Cannot take advantage of controller-specific
features not supported by motor record

• No provision for multi-axis coordination
• Most drivers in the motor package are written this

way for historical reasons

Model 1

• Developed 2006 by APS and DLS
• Uses standard asyn interfaces to communicate between

device support and driver
• A single device-independent device support file
• A single device-independent driver support file for asyn

interfaces
• Device dependent driver file below the asyn one
• Can use other records to talk to driver via asyn interfaces
• Not as easy as it should be to do so
• No implementation of multi-axis coordination
• A few drivers in the motor package are written with Model

2
– Simulation driver, Newport XPS, Newport MM4000, ProDex

MAXnet, Attocube ANC150, Aerotech Ensemble

Model 2

• New C++ model introduced here.
• Two base classes, asynMotorController and

asynMotorAxis.
• Base classes provide much functionality, only need to

write device-specific implementations.
• Easy to support controller-specific features
• Don’t have to use motor record.
• Direct support for coordinated profile moves in the driver

API.

Model 3

class epicsShareFunc asynMotorController : public asynPortDriver {
asynMotorController(const char *portName, int numAxes, int numParams,

int interfaceMask, int interruptMask,
int asynFlags, int autoConnect, int priority, int stackSize);

virtual asynMotorAxis* getAxis(asynUser *pasynUser);
virtual asynMotorAxis* getAxis(int axisNo);

virtual asynStatus startPoller(double movingPollPeriod, double
idlePollPeriod, int forcedFastPolls);

virtual asynStatus wakeupPoller();
virtual asynStatus poll();
void asynMotorPoller();

virtual asynStatus initializeProfile(size_t maxPoints);
virtual asynStatus buildProfile();
virtual asynStatus executeProfile();
virtual asynStatus abortProfile();
virtual asynStatus readbackProfile();

asynMotorController

class epicsShareFunc asynMotorAxis {
virtual asynStatus move(double position, int relative,

double minVelocity, double maxVelocity, double acceleration);
virtual asynStatus moveVelocity(double minVelocity, double maxVelocity,

double acceleration);
virtual asynStatus home(double minVelocity, double maxVelocity,

double acceleration, int forwards);
virtual asynStatus stop(double acceleration);
virtual asynStatus poll(bool *moving);
virtual asynStatus setPosition(double position);

virtual asynStatus initializeProfile(size_t maxPoints);
virtual asynStatus defineProfile(double *positions, size_t numPoints);
virtual asynStatus buildProfile();
virtual asynStatus executeProfile();
virtual asynStatus abortProfile();
virtual asynStatus readbackProfile();

asynMotorAxis

Parker ACR Model 3 Driver
• 650 lines of code total

(ACRMotorDriver.h,
ACRMotorDriver.cpp)

• Supports Jerk parameter, and bi,
bo, longin records via standard
asynUInt32Digital interface for
TTL I/O lines

• Less than 100 lines of code for
digital I/O support

• Create arrays of target locations of each motor in a multi-
axis controller

• Create array of time per element
• Define times/locations to output synchronization pulses to

trigger detectors
• Execute coordinated move
• Optionally read back encoder positions when each

synchronization pulse was output
• Many controllers have this capability

– Newport MM4000, Newport XPS, Delta Tau PMAC, Prodex
MAXv, Parker ACR series, etc.

• We now have an API to take use this capability in a
consistent way

• Now done in same driver as for motor record, eliminates
conflicts

Coordinated Motion
(Formerly called Trajectory Scanning)

Coordinated Motion
; IDL program to build, execute and readback profile
; This program builds a profile and executes it.

nelements = 100 ; 100 elements in the profile.
npulses = 100 ; 100 pulses in the profile.
naxes=2 ; We will move the first 2 motors (Phi and Kappa)

; Define array of positions
positions = dblarr(nelements, naxes)

; The Phi profile is a sin wave with two complete periods and an
; amplitude of +-1 degrees
positions[*,0] = 1.*sin(findgen(nelements)/(nelements-1.)*4.*!pi)

; The Kappa profile is a sin wave with one complete period and an
; amplitude of +-1 degrees
positions[*,1] = 1.*sin(findgen(nelements)/(nelements-1.)*2.*!pi)
profile = 'IOC:Prof1:'
group = 'GROUP1'

time = 0.1 ; Fixed time per profile point
status = profile_move(profile, positions, group=group, maxAxes=6, $

build=1, execute=1, readback=1, time=time, $
npulses=npulses, actual=actual, errors=errors)

end

Phi output profile

Kappa readback profile Kappa following error

Phi following error

SPEC Interface
• SPEC macros have been written to allow SPEC to

utilize profile moves via EPICS interface
• Low level interface, all of SPEC's standard scans

can be done "on-the-fly" with profile move
software. Replacement macros for:
– _ascan # Used by all ascan and dscan macros
– Mesh
– hklscan # Used by hscan, kscan and lscan
– _hklmesh
– _hklline # Used by hkcircle, hlcircle, klcircle,

hkradial, hlradial and klradial
– _scanabort resume
– _loop

SPEC Interface
• traj_index # Converts a SPEC motor index to

an MM4005 motor index
• traj_build # Builds a trajectory
• traj_exec # Executes a trajectory
• traj_read_counts # Reads the data from the

multi-channel scaler
• traj_read_actual # Reads back the actual

MM4005 motor positions
• traj_scans_on # Enables trajectory scanning
• traj_scans_off # Disables trajectory scanning,

uses step scanning
• Global variable TRAJ_USE_ACTUAL=(0,1)

Future Work

• Convert MAXv to Model 3
– Tim Mooney already has MAXv trajectory

scanning running in SNL program
• Support other controllers

– PMAC, etc.
• Add additional features
• Work on replacement for motor record?

SIS 3801/3820 Software Improvements
• Joerger VSC8/16 no longer available, SIS3820 attractive

alternative
• 32 inputs, on-board FIFO buffer memory (64MB/512 MB)
• Works in 2 modes

– Conventional scaler (like Joerger) with scaler record
– Multi-channel scaler with MCA record

• Ideal for on-the-fly scanning
– Internal channel advance, 1 microsecond to many seconds
– External channel advance with divide-by-N

• Use encoder or motor pulses as channel advance
• SIS3801 is older model, much less memory, fewer

features.
– No preset capability, I emulate it in software when reading FIFO
– Before that there was the nearly identical STR7201.

Problems with previous releases
• In previous releases the SIS3801 and SIS3820 drivers were

"synchronous“:
• MCA records blocked while arrays were read from the

FIFO on the VME modules.
• FIFO reads were done with VME program I/O (~4MB/s).

– OK for small arrays (e.g. 2048 channels) because it only took a
few ms to read each array.

• For very large arrays (e.g. 2,000,000 channels) it took
several seconds to read each array, blocking execution of
other EPICS records and tasks, leading to channel access
disconnects and other bad effects.

Improvements in new version (mca R7-0)
• FIFO is read by background thread into memory buffer

– Uses DMA on 3820, much higher performance (> 40MB/s)
– MCA or waveform records just read from memory buffer, no VME I/O

• Can use either MCA record or standard EPICS waveform record.
– Performance better with waveform record for very large arrays, less overhead

• New PVs for
– Software channel advance.
– Initial software channel advance when acquisition is started
– Configuration modes: 4 input control signals and the 4 output control signals.
– Channel 1 source: internal 25/50 MHz clock or external pulse input.
– control the user-defined LED and user-defined output control line on 3820
– Select which input is routed via the MUX output control signal on the 3820.
– Current acquisition mode (MCS or Scaler), model number and firmware

version.
– Current channel number being acquired.

• Replaced logic in databases (e.g. Struck32.db) with simple SNL program
– A single database can now be used. Previously needed different databases

depending how many inputs (2, 8, 16, 32, etc.) were being used

Improvements in new version (mca R7-0)
• drvSIS38XX base class derived from asynPortDriver
• drvSIS3801 and drvSIS3820 derived from drvSIS38XX.
• With improvements and new features in the drivers the amount of code has

decreased in R7-0 compared to previous releases

Size of driver source code

R6-12-5 R7-0

File Lines File Lines

devStr7201.c 264 SIS38XX_SNL.st 116

devScalerST7201.c 326 apsLib.h 58

drvMcaSIS3820Asyn.c 1689 drvSIS3801.cpp 731

drvMcaSIS3820Asyn.h 285 drvSIS3801.h 210

drvSTR7201.c 812 drvSIS3820.cpp 1017

drvSTR7201.h 38 drvSIS3820.h 225

mcaSIS3820Register.c 62 drvSIS38XX.cpp 542

mcaSSTR7201Register.c 49 drvSIS38XX.h 164

sis3820.h 240 sis3820.h 240

N.A. - vmeDMA.h 53

TOTAL 3765 TOTAL 3356

Size of dataBases

Struck32.db 623 SIS38XX.template 303

Struck8.db 215 SIS38XX_waveform.template 9

STR7201scaler.db 241 N.A. -

SIS3820.db 7 N.A. -

TOTAL 1086 TOTAL 311

Performance with very large arrays
• Test configuration (simulating how XPCS might want to run):

– SIS3820 module with 512MB of FIFO memory
– MVME 5100 CPU with 512MB of memory
– vxWorks 5.4.2 with Andrew Johnson's BSP with DMA support
– 2 active inputs
– 10,000,000 channels per waveform
– 2 waveform records
– Internal channel advance
– 1 microsecond dwell time
– ReadAll.SCAN = Passive

• Theoretical time for this acquisition to complete is 10.0 seconds. Output from
the EPICS "camonitor" program on a Linux client looking at the Acquiring
PV, and the first 2 channels of each waveform record:

> camonitor -tc -#2 SIS:3820:mca1 SIS:3820:mca2 SIS:3820:Acquiring
SIS:3820:Acquiring (2011-05-01 11:19:35.050808) Acquiring
SIS:3820:mca1 (2011-05-01 11:19:46.017134) 2 50 50
SIS:3820:mca2 (2011-05-01 11:19:46.017223) 2 0 0
SIS:3820:Acquiring (2011-05-01 11:19:46.017264) Done

• Time between when acquisition started and when the client received the data
and the Acquiring=Done status was 10.97 seconds.

– Less than 1 second of overhead in collecting 2 waveforms of 10,000,000 elements
each

– = 80MB of data

SIS38XX.adl

scaler_more.adl

