Microsecond Time-Resolved Radiography at 7-BM Beamline: Spray Diagnostics

TWG Meeting: November 18, 2010

Alan Kastengren
Center for Transportation Research, Argonne National Laboratory

Research Sponsor: DOE Vehicle Technologies Program
Motivation for Fuel Spray Measurements

- Desire to reduce use of non-renewable petroleum fuels
 - Environment: transportation petroleum use creates 1.8 billion tons of CO$_2$ per year*
 - Economic considerations
- Two main strategies for IC engine combustion
 - Spark ignition gasoline engines: clean, but inefficient
 - Diesel engines: efficient, but dirty
- Improving engine combustion depends on a better understanding and control of fuel-air mixture preparation: sprays
- Optical diagnostics are often used to study sprays, but multiple scattering makes quantitative measurements difficult
- X-ray techniques have significant advantages for spray applications
 - Good penetration through phase boundaries
 - Quantitative data
 - Focuses on core of spray, where most of the mass resides
X-Ray Diagnostics Reveal the True Structure of Sprays

Visible Light Image

Quantitative measurement of the fuel distribution
Stringent test for spray models

Radiography “Image”

Image courtesy of EMD, Essam El-Hannouny (ES)
Requirements for Time-Resolved Spray Radiography

Aspects of Sprays

- Standard diesel injection nozzle hole: 100-150 µm diameter
- Fuel is a hydrocarbon
- Required time resolution < 5 µs
- Pressurized chamber needed to simulate gas environment experienced in an engine
- S/N of at least 30:1 in data once processed into mass/area
- Need simple conversion of flux to mass/area

Beamline Requirements

- Tight focusing for good spatial resolution (< 10 µm spatial resolution)
- Low absorption (0.4/mm): even with contrast agent (2/mm), max absorption ~ 20-40%
- Need fast detector
- Relatively long (200-300 mm) working distance
- Limits usable photon energy
- $S/N > 150$ in x-ray flux measurement. When combined with time resolution, need high flux to reduce photon shot noise
- Relatively monochromatic beam needed
Flux Requirements and Experimental Setup

- Spray event lasts ~ 1 ms, fastest features last a few µs
- Spray is contained in a spray chamber filled with high pressure gas; 90% of flux can be lost in windows and chamber gas
- Not enough photons to do 2-D imaging
 - At 10^{10} ph/s, 5 µs = 50,000 photons
 - PAD measurements have been performed in the past
- Instead, measure one point at a time
 - Raster scan over 1000-2000 points
 - Spray is quite repeatable (µs) from event to event
 - 32-128 events/point to improve S/N
Mechanics of Radiography

- Dominant interaction of x-rays with matter is absorption, not scattering.
- Radiography: directly relate x-ray transmission to mass/area in beam:

\[\tau = e^{-\mu M} \]

\[M = -\frac{\ln(\tau)}{\mu} \]
Spray Distribution, 110 µm Diameter Nozzle
700 bar Rail Pressure, 1200 µs Duration
Focus BM fan onto a relatively small spot with upstream optics
 - Collimating mirror, sagittal focusing Si mono, vertical focusing mirror
 - Geometry precludes small focus spot sizes

Use slits to define a smaller beam

Problems with this approach
 - Beam size at spray not terribly well defined due to beam divergence
 - Little room to improve the flux
 - Longer working distances give a bigger beam
Multilayer Monochromator to Increase Flux

- While a monochromatic beam is desirable for radiography measurements, high spectral purity isn’t needed.
- Use a multilayer monochromator to increase flux at the expense of energy resolution:
 - W/B₄C multilayers, d = 2.4 nm, 100 layers
 - 1.4% ΔE/E

- Advantages:
 - Much higher flux than crystal mono
 - Virtually no harmonics due to multilayer design
 - Flexibility to change properties by changing multilayer coating

- Disadvantages:
 - Low Bragg angles (1.86° at 8 keV)
 - Long monochromator tank, and crystals must be held on separate stages
 - Sagittal focusing becomes far more challenging
 - Different d spacing on crystals causes mono beam to be tilted slightly
Multilayer Monochromator to Increase Flux

Beamline Flux at z = 36 m

Monochromator Energy Resolution at Three Photon Energies
7-BM Experimental Setup

- Spray event lasts ~ 1 ms, fastest features last a few µs
- Spray is quite repeatable (µs) from event to event, so we can measure one point at a time
- Raster scan over 1000-2000 points
- 32-128 events/point
IDT K-B Focusing Mirrors

- Focusing optics are a pair of K-B focusing mirrors from IDT
- Mirror specs:
 - 300 mm long for each mirror, 260 mm optical surface length
 - Coating: 50 nm Rh over 10 nm Cr
 - Design working distance 250 mm from end of mirror box
 - Designed mirror angle 5 mrad
- Mechanics
 - Motions for upstream position, downstream position, and two bending moments
 - Repeatability of motions around 1 µm
- Commissioned July-August 2010
- Identical mirrors will soon be installed in 7-ID-D
Theoretical Mirror Performance

<table>
<thead>
<tr>
<th></th>
<th>Vertical</th>
<th>Horizontal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source sigma</td>
<td>28.5</td>
<td>86</td>
</tr>
<tr>
<td>Mirror Length</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Working Distance</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>f1</td>
<td>36.3</td>
<td>36.62</td>
</tr>
<tr>
<td>f2</td>
<td>0.75</td>
<td>0.43</td>
</tr>
<tr>
<td>Flat Slope Error</td>
<td>0.63</td>
<td>1</td>
</tr>
<tr>
<td>Total Slope Error</td>
<td>0.632</td>
<td>1.027</td>
</tr>
<tr>
<td>Ideal FWHM</td>
<td>1.384</td>
<td>2.373</td>
</tr>
<tr>
<td>FWHM</td>
<td>2.621</td>
<td>3.153</td>
</tr>
<tr>
<td>Mirror Angle</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Intercepted Beam</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Ideal Flux at 8 keV</td>
<td>1.5 x 10^{12}</td>
<td></td>
</tr>
</tbody>
</table>
Measured Mirror Performance

- Best focus spot achieved: 4 (V) x 5 (H) µm FHWM
 - Not far from expected beam size
 - Determined with imaging on a Ce:YAG, so this may overestimate beam size
- Mirror reflectivities at 8 keV: 88% V focusing mirror, 87% H focusing mirror, 76% combined
- Flux at mirror exit: 1.5×10^{11} ph/s at 8 keV
 - About 10% of ideal flux from bending magnet
 - Reasonable considering multilayer reflectivity, windows, mirror reflectivity
 - 8 x more flux than with 100 mm long K-B pair used previously
- Tested at 5 and 6 mrad angle: more intensity at 6 mrad, but reflectivities worse
- Tested at working distances from 200 – 450 mm
- Performed well at 7, 8, and 10 keV
- Room in mechanics to decrease working distance
 - Bend motion at 12 mm when focused, compared to limit of 19 mm
 - Requires different shape to mirror substrate
Price of Tight Focusing + Time Resolution: Need for Good Beam Stability

- With smaller beam from the new mirrors, we found that beam stability becomes increasingly important.
- Use a Prosilica camera, YAG:Ce screen, and 5x microscope to image beam motion at 150 Hz frame rate.
 - Exposure time < 1 ms, so it makes a reasonably high-speed diagnostic.
 - Vertical beam FWHM = 4-5 µm.
 - Vertical beam motion = 8 µm p-p.
- Lead to significant repairs of monochromator.
- Additional vibrations tied to a vacuum pump used to pump down flight tube.
- After improvements, motion is 2-3 µm.
Detectors for Time-Resolved Radiography: PIN Diode vs. APD

APD
- Nonlinear at high flux (> 10^9 ph/s)
- Requires GHz sampling rates
- Will not work in 324 bunch mode

PIN Diode
- Linear
- DC to several MHz
- Works in all fill patterns
- Can treat x-ray source as quasi-CW
Beam Intensity Varies Significantly at P0 Frequency

- Bandwidth required for spray measurements is 1 MHz or less
- Different bunches in the electron ring contain significantly different charge
 - A few %
 - Shows up as beam intensity variations at P0 and higher harmonics
 - Interferes with investigating fast changes in the spray
 - Changes slightly with each top-up
- Workarounds
 - Measure fluctuation with an I0 monitor, but hard to get a good enough signal
 - Bin data every cycle: limits time resolution
 - Average away intensity fluctuations

Beam Intensity Fluctuations
11/11/2010: 324 Bunch
PIN Diode Filtered at 1 MHz
Phase Shifter: Strategy to Remove Bunch Charge Variations

- Average across \(n \) spray events to improve S/N (\(n=16, 32, 64 \))
- Synchronize DAQ to P0 (\(\sim 3 \text{ Hz} \))
- Phase shifting box built by the Detector Pool based on their generic digital concept
 - Small on-board computer that runs EPICS
 - FPGA to perform processing
- Adds a time delay of \(3.68 \mu s / n \) for every trigger
- After averaging over \(n \) events, the bunch charge variations average out
- Greatly reduces intensity fluctuations
 - More flexibility in time resolution
 - Easier filtering of remaining fluctuations

Beam Intensity Fluctuations
11/11/2010: 324 Bunch
PIN Diode Filtered at 1 MHz
Summary

- Fuel spray measurements are an important component of DOE IC engine research
- 7-BM beamline optimized for time-resolved radiography measurements
- Multilayer monochromator for higher flux
- Large K-B focusing mirrors to achieve a small focus spot size with high flux
- PIN diode detector: linear at higher flux than APD in analog mode
Acknowledgements

- Chris Powell (ES) and Jin Wang (XSD)
- Eric Dufresne, Dohn Arms, Dohn Walko
- Peter Eng