

Development of a short-pulse laser enhancement cavity for intense-laser/x-ray pump-probe experiments at 6.5 MHz

Anne Marie March

AMO Group, X-ray Science Division
Argonne National Lab

APS InterCAT Technical Workgroup Seminar October 21, 2010

Collaborators

AMO Group in XSD

Robert W. Dunford
Elliot P. Kanter
Bertold Krässig
Gilles Doumy
Dipanwita Ray
Phay J. Ho
Stephen H. Southworth
Linda Young

NIST, University of Colorado

Jun Ye Thomas Schibli Dylan Yost Travis Briles

APS, Sector 7

Yuelin Li Eric Dufresne Dohn Arms Don Walko

Outline

- Scientific motivation for high repetition rate intense-laser/x-ray pump-probe experiments
- Laser amplification at high rep rate using a passive optical cavity
 - Passive optical cavity basics
 - Active stabilization of cavity length using a feedback control loop and the Pound Drever Hall locking technique
 - Characteristics of enhancement cavity at 7ID-D to amplify ps pulses at 6.5 MHz
- Summary

Scientific Motivation

 Combine ultrafast, strong-field laser techniques with x-ray absorption and scattering techniques to understand and control the behavior of atoms and molecules on ultrafast time scales

Molecules in Strong Laser Fields

Figure from Science 295, 1659 (2002)

• To achieve these intensities, need amplified, short-pulse laser systems "standard" CPA ti:sapphire laser system:

~1 mJ, 100 fs, 1 kHz

Demonstrated Control Over Molecular Alignment and X-ray Absorption

Dilute sample, signal is weak, we're looking for changes that are subtle need to use the full flux offered by the APS!

Typical Laser, Synchrotron X-ray Rep-Rate Mismatch

- APS 24 bunch mode: x-ray rep rate = 6.5 MHz
- Typical Intense Laser System: laser rep rate = 1 kHz

• Typical pump/probe experiment:
$$\frac{\text{used x - rays}}{\text{unused x - rays}} = 0.00015$$

High Rep-Rate Laser at 7ID-D

Time Bandwidth DUETTO

- λ =1064 nm (frequency double to 532 nm)
- Variable Repetition Rate, 50 kHz 6.52
 MHz
- 2 modes: 10 ps and 130 ps
- Customized pulse picker to allow for synchronization with x-rays

Amplifying while maintaining a high repetition rate Passive Enhancement Cavity

- Coherently add subsequent laser pulses within a high finesse optical cavity
- Carry out XAS experiment within the cavity

Demonstration with picosecond pulses:

- E.O. Potma et al, Opt. Lett., **28**, 1835 (2003)
- 76 MHz, 130x amplification, 13 W

• Intracavity High Harmonic Generation

- R. J. Jones, et al, PRL, 94, 193291 (2005)
- Femtosecond enhancement cavity
- 100 MHz, 600x amplification, $I \sim 10^{14} \text{ W/cm}^2$
- HHG from intracavity gas jet

Fabry-Perot resonator basics

How does this work for pulsed lasers?

Match cavity modes to frequency comb

Rep. Rate =
$$\frac{c}{2L}$$
 (Free spectral range)

Active stabilization of cavity length

- Noise in the frequency of the laser and noise in the positions of the mirrors of the cavity
- Feedback loop to keep the cavity and laser in resonance

Generating the error signal: Pound-Drever-Hall locking technique

First, a comparison with alternate techniques:

Monitor transmitted power, lock to side of peak

- Change in frequency corresponds to change in intensity
- But, cannot distinguish between frequency noise and amplitude noise

Monitor reflected power, lock to zero

- Decouples amplitude and frequency noise
- But, intensity is symmetric about resonance (don't know whether to increase or decrease cavity length to bring back to resonance)

Pound Drever Hall locking basics

- Reflected light is a coherent sum of two beams: light immediately reflected and leakage from cavity
 - phase depends on cavity length, is asymmetric about resonance

PDH:

- Monitior reflected light
- Detect (indirectly) phase of reflected light

photodetector

 E_t , λ

frequency (free spectral ranges)

Pound Drever Hall locking

- Phase modulate laser beam, with frequency Ω , to create sidebands at $(\omega \pm \Omega)$
- Choose Ω so that sidebands are outside resonance width
 - On resonance, sidebands are reflected from cavity
- Photodetector sees wave with nominal frequency ω , but with an envelope displaying a beat pattern with frequencies:
 - Ω (interference between carrier and sidebands) Isolate this part
 - 2Ω (interference between sidebands)

Enhancement Cavity for Duetto at 6.5 MHz

- 6.5 MHz \rightarrow 46 m long cavity
 - Herriott cell geometry
- 99.99% mirror reflectivity, 46 mirror bounces
 - ~0.5% loss
- Impedance matched cavity: F = ~600
 - ~100x pulse energy enhancement
 - ~10 kHz cavity resonance width

Cavity Stabilization:

- Pound-Drever-Hall technique
- Combination of tranducers:
 - Fast piezo-actuated mirror in cavity
 - Slow piezo with larger dynamic range in cavity
 - EOM in beam before cavity to compensate for fast noise

Setup in 7ID-D

Cavity Layout

- 2.5 % input coupler in place
- Finesse ≈ 197
- 2.6 m (round trip) cavity length→FSR=115 MHz
- Cavity resonance has linewidth = 600 kHz

Analyzing Performance

Look at Fourier components of the in-loop error signal

Summary

- High repetition rate amplified laser systems are needed for precision experiments utilizing ultrafast, strong-field laser techniques and x-ray techniques
- Passive enhancement cavities are a challenging, but promising solution
- Development is under way of an enhancement cavity to amplify 130 ps, 1064 nm laser pulses at 6.5 MHz, enabling intense-laser/x-ray pump probe experiments that utilize the full flux available at the APS