
areaDetector: A new module
for EPICS area detector

support
Mark Rivers

GeoSoilEnviroCARS, Advanced Photon Source

University of Chicago

• Brief overview of areaDetector module
• Highlight changes since last TWG presentation (June

19, 2008)
– Releases

• 1-0 (11-Apr-2008)
• 1-1 (10-May-2008)
• 1-2 (24-Oct-2008)
• 1-3 (24-Nov-2008)
• 1-4 (30-Jan-2009)
• 1-5 (23-August-2009)

• Demo with Prosilica camera

areaDetector Talk Outline

areaDetector - Motivation

• 2-D detectors are essential components of synchrotron
beamlines

– Sample viewing cameras, x-ray diffraction and scattering detectors, x-
ray imaging, optical spectroscopy, etc.

• Need to control the detectors from EPICS (useful even on non-
EPICS beamlines, since other control systems like SPEC etc.
can talk to EPICS)

• Previously several packages available, each typically restricted
to a small set of detectors (Flea, Pilatus, marCCD, etc.)

• Clear advantages to an architecture that can be used on any
detector, re-using many software components

• Providing EPICS control allows any higher-level client to
control the detector and access the data (SPEC, medm, IDL
programs, Python scripts, etc)

areaDetector - Goals
• Drivers for many detectors popular at synchrotron beamlines

– Handle detectors ranging from >500 frames/second to <1 frame/second

• Basic parameters for all detectors
– E.g. exposure time, start acquisition, etc.
– Allows generic clients to be used for many applications

• Easy to implement new detector
– Single device-driver C++ file to write. EPICS independent.

• Easy to implement detector-specific features
– Driver understands additional parameters beyond those in the basic set

• EPICS-independent at lower layers.
• Middle-level plug-ins to add capability like regions-of-interest

calculation, file saving, etc.
– Device independent, work with all drivers
– Below the EPICS layer for highest performance

• NDArray
– N-Dimensional array.

• Everything is done in N-dimensions (up to 10), rather than 2. This is
needed even for 2-D detectors to support color.

– This is what plug-ins callbacks receive from device drivers.
• NDAttribute (NEW)

– Each NDArray has a list of associated attributes (metadata) that
travel with the array through the processing pileline. Attributes can
come from driver parameters or any EPICS PV; e.g. can store motor
positions, temperature, ring current, etc. with each frame.

• NDArrayPool
– Allocates NDArray objects from a freelist
– Plugins access in readonly mode, increment reference count
– Eliminates need to copy data when sending it to callbacks.

areaDetector – Data structures

ADBase
.template

Standard asyn device support
(device-independent)

Vendor API

Driver

Channel Access Clients (medm, IDL, ImageJ, SPEC, etc.)

EPICS areaDetector Architecture

xxxDriver
.template

Hardware

C++ Base classes
(NDArray, asynPortDriver,
asynNDArrayDriver,
ADDriver, NDPluginDriver)

Layer 5
Standard
EPICS records

Layer 4
EPICS device
support

Layer 3
Plug-ins

Layer 1
Hardware API

Layer 2
Device drivers

Layer 6
EPICS CA clients

StdArrays
File

(netCDF, TIFF, JPEG,
HDF)

NDPluginXXX.
template

Channel access
Record/device support
asynInt32, Float64, Octet

asynGenericPointer (NDArray)
asynXXXArray

C library calls

NDPluginBase
.template

ROIColorConvert

Details: NDArray
/** Enumeration of NDArray data types */
typedef enum
{

NDInt8, /**< Signed 8-bit integer */
NDUInt8, /**< Unsigned 8-bit integer */
NDInt16, /**< Signed 16-bit integer */
NDUInt16, /**< Unsigned 16-bit integer */
NDInt32, /**< Signed 32-bit integer */
NDUInt32, /**< Unsigned 32-bit integer */
NDFloat32, /**< 32-bit float */
NDFloat64 /**< 64-bit float */

} NDDataType_t;

/** Structure defining a dimension of an NDArray */
typedef struct NDDimension {

int size;
int offset;
int binning;
int reverse;

} NDDimension_t;

Details: NDArray
class NDArray {
…
public:

int uniqueId;
double timeStamp;
int ndims;
NDDimension_t dims[ND_ARRAY_MAX_DIMS];
NDDataType_t dataType;
int dataSize;
void *pData;
NDAttributeList *pAttributeList;

};

Details: NDAttribute
class NDAttribute {
public:
virtual int getValue(NDAttrDataType_t dataType, void *pValue, size_t
dataSize=0);

virtual int setValue(NDAttrDataType_t dataType, void *pValue);
virtual int updateValue();
…
char *pName;
char *pDescription;
char *pSource;
NDAttrSource_t sourceType;
NDAttrDataType_t dataType;

/** NDAttributeList class; this is a linked list of attributes. */
class NDAttributeList {

/** Attribute that gets its value from an EPICS PV. */
class PVAttribute : public NDAttribute {

/** Attribute that gets its value from an asynNDArrayDriver driver
parameter.
class paramAttribute : public NDAttribute {

Driver and PluginAttributes Defined via
User-Created XML File

<?xml version="1.0" standalone="no" ?>
<Attributes>
<Attribute name="AcquireTime"

type="EPICS_PV"
source="13PS1:cam1:AcquireTime"
dbrtype="DBR_NATIVE“
description="Camera acquire time" />

<Attribute name="CameraModel"
type="PARAM"
source="MODEL“
datatype="STRING"
description="CameraModel" />

<Attribute name="FramesDropped"
type="PARAM"
source="PS_FRAMES_DROPPED"
datatype="INT"
description="FramesDropped" />

</Attributes>

Color Support (NEW)
• 4 colors models are supported

– RGB1 (pixel interleave, e.g. RGB for each pixel are
adjacent)

– RGB2 (row interleave, e.g. R for row 1, then G, then B)
– RGB3 (plane interleave, e.g. R for image, then G then B)
– Bayer (color mask commonly used on color cameras)

• ColorConvert plugin converts between these color
models

• Can reduce bandwidth 3X to read Bayer directly
from camera (rather than RGB) and do color
conversion in areaDetector

– Tradeoff bandwidth for CPU usage
• Can stream Bayer to file and do color conversion

later, reduce file size 3X.

Detector drivers
• ADDriver

– Base C++ class from which detector drivers derive. Handles details
of EPICS interfaces, and other common functions.

• Simulation driver
– Produces calculated images up to very high rates. Implements nearly

all basic parameters, including color. Useful as a model for real
detector drivers, and to test plugins and clients.

• Prosilica driver
– Gigabit Ethernet cameras, mono and color
– High resolution, high speed, e.g. 1360x1024 at 30 frames/second =

40MB/second.
• Firewire (IEEE-1396 DCAM) (NEW)

– Vendor-independent Firewire camera drivers for Linux and
Windows

• Roper driver (NEW)
– Princeton Instruments and Photometrics cameras controlled via

WinView

Detector drivers (continued)
• PVCAM driver (NEW)

– Princeton Instruments and Photometrics cameras controlled via
PVCAM library

• Pilatus driver (NEW)
– Pilatus pixel-array detectors.

• marCCD driver (NEW)
– Rayonix (MAR-USA) CCD x-ray detectors

• ADSC driver (NEW)
– ADSC CCD detectors

• mar345 driver (NEW)
– marResearch mar345 online image plate

• Perkin-Elmer driver (NEW)
– Perkin-Elmer amorphous silicon detectors

ADBase.adl – Generic control screen

• Works with any
detector

• Normally write custom
control for each
detector type to hide
unimplemented
features and expose
driver-specific features

Plugins
• Designed to perform real-time processing of data, running in the EPICS

IOC (not over EPICS Channel Access)
• Receive NDArray data over callbacks from drivers or other plugins
• Plug-ins can execute in their own threads (non-blocking) or in callback

thread (blocking)
– If non-blocking then NDArray data is queued

• Can drop images if queue is full
– If executing in callback thread, no queuing, but slows device driver

• Allows
– Enabling/disabling
– Throttling rate (no more than 0.5 seconds, etc)
– Changing data source for NDArray callbacks to another driver or plugin

• Some plugins are also sources of NDArray callbacks, as well as
consumers.

– Allows creating a data processing pipeline running at very high speed, each
in a different thread, and hence in multiple cores on modern CPUs.

Plugins (continued)
• NDPlugInStdArrays

– Receives arrays (images) from device drivers, converts to standard arrays,
e.g. waveform records.

– This plugin is what EPICS channel access viewers normally talk to.
• NDPluginROI

– Performs region-of-interest calculations
– Select a subregion. Optionally bin, reverse in either direction, convert data

type. Optionally highlight borders within other ROIs.
– Optionally compute statistics on the region (min, max, mean, total, net, etc.)
– Optionally compute histogram of the region, make available as waveform

for client plotting.
• NDPluginColorConvert (NEW)

– Convert from one color model to another (Bayer, RGB pixel, row or planar
interleave)

• NDPluginMJPEG (NEW)
– MJPEG server that allows viewing images in a Web browser.

StdArrays and ROI plugin displays

Plugins: NDPluginFile
• Saves NDArrays to disk
• 3 modes:

– Single array per disk file
– Capture N arrays in memory, write to disk either multiple files or as a single large file (for

file formats that support this.)
– Stream arrays to a single large disk file

• File formats currently supported
– TIFF (NEW)
– JPEG (with compression control) (NEW)
– netCDF (popular self-describing binary format, supported by Unidata at UCAR)
– NeXus (NEW) (standard file format for neutron and x-ray communities, based on HDF,

which is another popular self-describing binary format, richer than netCDF).
• netCDF and HDF save NDAttributes as well as NDArray data to the file
• In addition to file saving plugins, many vendor libraries also support saving files (e.g.

marCCD, mar345, Pilatus, etc.) and this is supported at the driver level.
• File saving plugin can be used instead of or in addition to vendor file saving

– Can add additional metadata vendor does not support
– Could write JPEGS for Web display every minute, etc.

NDPluginFile display

Example: streaming 80 frames/second of 640x480 video to
netCDF file, no dropped frames.

Viewers

• areaDetector allows generic viewers to be written
that receive images as EPICS waveform records
over Channel Access

• Current viewers include:
– ImageJ plugin EPICS_AD_Display. (NEW) ImageJ is a

very popular image analysis program, written in Java,
derived from NIH Image.

– IDL EPICS_AD_Display.
– IDL areaVision (NEW) (Stephen Mudie from AS)
– MJPEG server (NEW) allows image display in any Web

browser

ImageJ Viewer

Performance Example with Pilatus driver
• SPEC used to collect 1000 points using trajectory scanning mode with the

Newport XPS motor controller. Hardware trigger of Pilatus from XPS.
• Relative scan of the chi axis from -2 degrees to +2 degrees with 1000 points at

.02 seconds/point
• Coordinated motion of the phi, kappa and omega axes.
• Theoretical time 20.0 second, actual time 20.8 seconds
• Includes time to save all 1000 images to disk (366 MB), Pilatus driver to read

each file, correct bad pixels and flat field, compute ROIs, and post the ROIs and
1000 images to EPICS.

• Architecture works well, easily extended to new detector
drivers, new plugins and new clients

• Base classes, asynPortDriver, asynNDArrayDriver,
asynPluginDriver actually are generic, nothing “areaDetector”
specific about them.

• They can be used to implement any N-dimension detector, e.g.
the XIA xMAP (16 detectors x 2048 channels x 512 points in a
scan line)

• Now installed on all APS detector pool 2D detectors.
• Can get source code and pre-built binaries (Linux, Windows,

Cygwin) from our Web site:
– http://cars.uchicago.edu/software/epics/areaDetector

• Can also get code on SourceForge
– http://epics.svn.sourceforge.net/viewvc/epics/applications/trunk/areaDetector

Conclusions

• Brian Tieman (APS) Roper PVCAM driver
• John Hammonds (APS) Perkin-Elmer driver and NeXus file

saving plugin
• Tim Madden (APS) initial version of ImageJ viewer
• Stephen Mudie (Australian Synchrotron) areaViewer IDL-

based viewer
• Ulrik Pedersen and Tom Cobb (Diamond) MJPEG plugin,

Linux Firewire driver
• Lewis Muir (U Chicago) ADSC CCD driver
• NSF-EAR and DOE-Geosciences for support of GSECARS

where most of this work was done
• Thanks for your attention!!!

Acknowledgments

