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Containerless processing/levitation

F = -mg

Using containerless methods accesses:
• high purity
• non-equilibrium liquids
• pristine liquid surfaces 
• eliminates sample “holder”

Material

Atmosphereevaporation
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Container

contamination reactions

nucleation

Tendency for chemical reactions 
increases exponentially with T
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Issues

n You can’t touch the sample with anything
n Non-contact measurements

• Beams
• Optical probes
• Spectroscopy

– Non-contact temperature control
• Lasers/beams – surface heating
• EM – bulk heating
• Microwave – bulk heating

n Sample sizes are limited

n Compositions and materials may be specific to the method
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Scientific applications of levitation (containerless techniques)

n Avoid contamination of materials at extreme temperatures
n Control melt chemistry under extreme conditions
n Investigate surface reactions with reactive environments
n Avoid nucleation to access deeply supercooled and non-equilibrium liquids 

and glasses
n Expose pristine liquid surfaces
n Scientific and technological interest derives from:

– Geo-materials community: planetary evolution, carbon sequestration, 
waste storage

– Fundamental condensed matter physics: glass transition, fragile 
liquids, nucleation and ordering in supercooled liquids

– Bio-materials community: supersaturated solutions, bio-active phases
– Energy materials: materials at extreme temperatures in chemically 

active gases
– Measurement of thermophysical properties of hot liquids: surface 

tension, viscosity, heat capacity
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“Transient” methods: Shot tower, William Watts, England, 
1782

A shot tower in 
Dubuque, IA
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Aero-acoustic Levitation

UHV Electrostatic 
levitation

Electromagnetic Levitation
High pressure electrostatic 
levitation

Aerodynamic levitation

Acoustic levitation

Magnetic levitation

Some methods for “steady-state” containerless or levitation
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Comparison of levitation techniques

3-8*
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Aerodynamic levitation

Antonov-225, payload 550,000 lbs
Takeoff wt. ~4 x 108 grams

Plenty of force available
Size limit results from fragmentation of liquids

γ
ρ 2gL

Bo =
0

0.05

0.1

0.15

0.2

0.25

0.05 0.075 0.1 0.125 0.15

Radius (cm)

B
o

n
d

 N
u

m
b

er

STABLE LEVITATION OF LIQUIDS



11

Operated as a Class I laser system with embedded 250 Watt (Class IV) CO2 laser in the lab and at 11 ID-C



12

X-ray set up

Mar 345, PE 1600, GE Revolution

1 mm square beam
Area detector
High energy
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Desirable features of an APS research levitation system

n Beamline and lab. based systems to enable sample synthesis and testing
n Non-contact temperature measurement

– Optical diagnostics and beam probes
n Class I laser operation

– Enhanced safety
– More accessible to users

n Ability to change process atmospheres
– Oxidizing, neutral, reducing, reactive

n Basic lab support:
– semi-micro balance, density meas., mixing and grinding equipment, 

technical support
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Some examples of reluctant glass formers 
made using levitation melt processing

n Al2O3-CaO 50-75 % CaO
n Al2O3-RE oxide 20-50 % RE oxide (includes RE garnets and perovskites)
n Al2O3-SiO2 up to 67 % Al2O3 (includes 60/40 mullite)
n CaO-SiO2 up to 50% CaO
n MgO-SiO2 up to 67 % MgO (includes enstatite and forsterite)
n Calcium phosphates
n Zr-Cu-Ni-Al-Ti alloys Cooling rate limited by surface area:volume

A67S33 Mg2SiO4 ErAG YAG                               LAG

1000                   300                   100              30 K/s @ 1300K

3 mm
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Temperature dependent structure of liquids

Liquid 1600oC

Mei, et al, PRL, 98, 057802 (2007).

SiO2
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Acoustic Levitation
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What the image plate “sees”

-15°C-15°C +16°C+16°C

Small (sub-millimeter) sample motion does not 
measurably affect the data quality
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Electromagnetic levitation
n Need skin depth, d, < sample x-section
n Force is proportional to (field gradient)2

n Heating is proportional to (induced (current) field)2

n Typically 450 kHz generator (Lepel, Inductotherm, 
Ameritherm)

n Need to match impedance of load
n Need to avoid FCC frequencies
n Heating and levitation are coupled
n Cooling gas or beam heating can extend T range
n Used in a demo expt. at GLAD ~1993
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Non-contact temperature measurement

5,6 carboxyfluorescein rhodamine B

Inframetrics 760, 8-12 µm 
thermal imaging camera

FL emission ratio measurements 
Ross et al, Analyt. Chem., 
4117-23, 73 (2001). 
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Summary

• Good coverage of  “sample 
environment space”

• Ability to investigate liquids under non-
equilibrium conditions and at high 
purity

• Class I laser system maximizes safety, 
minimizes user training requirements

• Complementary bench top facility 
enables characterization and  
synthesis

• Neutron + X-ray needed to 
deconvolute structure and constrain 
models

• Work needed on low T measurement
• Work needed on fast measurements 

in transient conditions – high flux is 
essential
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