

... for a brighter future

U.S. Department of Energy UChicago ► Argonne_{uc}

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Nanoradian Angular Stabilization of

X-ray Optical Components

Stanislav Stoupin

In collaboration with

Yu. Shvyd'ko, F. Lenkszus, R. Laird, K. Goetze and K.-J. Kim

Outline

- Stabilization of high resolution x-ray optics.
- Automatic adjustment of Bragg angle: principle of operation
- Implementation at Sector 30
- Performance
- Operation
- Conclusions

Motivation: feasibility studies of XFELO

Precise control of the cavity geometry is needed

K.-J. Kim and Yu. Shvyd'ko, Phys. Rev. STAB (2009)

Design Requirements:

- Angular stability $\delta\Theta\lesssim 10$ nrad
- feedback on the signal of interest the XFELO output
- Stabilization of multiple optical axes using one common detector

High Resolution X-ray Optics

A similar problem: stable operation of the state of the art high resolution optics at the 3^{rd} generation synchrotron sources

L.J. van Mellaert and G.H. Schwuttke, Phys. Stat. Solidi (1970)
D. Mills and V. Pollock, Rev. Sci. Inst. (1980)
F. Bridges, Nucl. Inst. and Meth. A (1987)
M. Ramanathan et al., Nucl. Inst. and Meth. A (1988)
R. Fischetti et al., J. Synch. Rad. (2004)
O. Proux et al., J. Synch. Rad. (2006)

Variation in x-ray intensity due to modulation with v(t): $I(t) \simeq R(V_0) + \frac{dR}{dV}(V_0)v(t)$ For a quadratic profile of the rocking curve, $R(V) = R_{max} - B(V - V_{max})^2$, the derivative is proportional to deviation from the optimal voltage V_{max} : $\frac{dR}{dV}(V) = -2B(V - V_{max})$ The amplitude of I(t) is extracted by demodulation (lock-in detection) and used to form a correction signal

Feedback implementation

Lock-in amplifier (SR830)

Integrator (built in-house)

CONTROLLER

HRM TH3

Feedback implementation: C(111) high heat load mono

Inside the mono: 1^{st} crystal

- first resonance at pprox 16 Hz
- inherent servo loop at 30-70 Hz

Feedback loop is operated with with ref. oscillator frequency of 2 Hz

Piezo driver (Queensgate AX101)

Dynamic response: magnitude phase

Feedback implementation: 6 bounce high resolution mono

T. Toellner et al., $\Delta E\simeq 0.9~{
m meV}$ @ 23.725 keV

Piezo driver (PI E-503)

Feedback loop is operated on the 3^{rd} pair (crystals 5 and 6) using ref. oscillator frequency of 10 Hz

Angular stability of the 3^{rd} pair

Voltage to angle conversion factor: $\gamma \simeq 7 \mu \text{rad}/\text{Volt}$

Reliable operation of the feedback is achieved with 4-6 mV amplitude of the ref. oscillator \rightarrow 50 nrad angular fluctuations

Performance

• The output intensity (green) is tracking an input x-ray intensity on the 3^{rd} pair (red) while the correction signal (brown) drifts slowly to provide compensation.

• The large peak in the correction signal - refill of liquid N_2 for the 2^{nd} pair: the output intensity remains stable.

Operation

- two feedback channels
- remotely controlled (EPICS,SPEC)
- now employed in user operations

- \approx 50 nrad stability is demonstrated
- the old simple technique is applicable to high resolution optics
- substantial improvement in beamline performance
- encouraging first step towards stabilization of the XFELO cavity

Future work:

- demonstrate 10 nrad stability
- development of a multi-channel feedback system
- stabilization of multiple optical axes using one common detector

Jeremy Kropf (ANL) Stan Whitcomb (LIGO) Mark Rivers (APS) Thomas Gog (APS) Thomas Toellner (APS) Deming Shu (APS) Tim Roberts (APS) Ayman Said (APS) Mary Upton (APS) Alessandro Cunsolo (APS) Xuesong Jiao (APS)

