Nanoradian Angular Stabilization of X-ray Optical Components

Stanislav Stoupin

In collaboration with
Yu. Shvyd’ko, F. Lenkszus, R. Laird, K. Goetze and K.-J. Kim
Outline

- Stabilization of high resolution x-ray optics.
- Automatic adjustment of Bragg angle: principle of operation
- Implementation at Sector 30
- Performance
- Operation
- Conclusions
Motivation: feasibility studies of XFELO

Precise control of the cavity geometry is needed

Design Requirements:
- Angular stability - $\delta \Theta \lesssim 10$ nrad
- Feedback on the signal of interest - the XFELO output
- Stabilization of multiple optical axes using one common detector

High Resolution X-ray Optics

A similar problem: stable operation of the state of the art high resolution optics at the 3rd generation synchrotron sources

<table>
<thead>
<tr>
<th></th>
<th>C(111) cooled monochromator</th>
<th>high-resolution monochromator 23.74 keV</th>
<th>KB focusing mirror</th>
</tr>
</thead>
<tbody>
<tr>
<td>bandwidth</td>
<td>≈100 eV</td>
<td>≈0.9 meV</td>
<td>focus 5 μm ×40 μm</td>
</tr>
<tr>
<td></td>
<td>1×10^{13} Hz @ 23.74 keV</td>
<td>2×10^9 Hz</td>
<td></td>
</tr>
</tbody>
</table>

HERIX @ 30-ID

9 detectors

9 analyzers
Variation in x-ray intensity due to modulation with $v(t)$: $I(t) \simeq R(V_0) + \frac{dR}{dV}(V_0)v(t)$

For a quadratic profile of the rocking curve, $R(V) = R_{max} - B(V - V_{max})^2$,

the derivative is proportional to deviation from the optimal voltage V_{max}: $\frac{dR}{dV}(V) = -2B(V - V_{max})$

The amplitude of $I(t)$ is extracted by demodulation (lock-in detection) and used to form a correction signal.
Feedback implementation

Lock-in amplifier (SR830)

Integrator (built in-house)

Nanoradian angular stabilization, S. Stoupin, InterCAT TWG Meeting, Aug 20, 2009
Feedback implementation: C(111) high heat load mono

Inside the mono: 1st crystal

Piezo driver (Queensgate AX101)

- first resonance at \(\approx 16\) Hz
- inherent servo loop at 30-70 Hz

Feedback loop is operated with ref. oscillator frequency of 2 Hz
Feedback implementation: 6 bounce high resolution mono

T. Toellner et al., $\Delta E \simeq 0.9\text{ meV} \, @\, 23.725\text{ keV}$

Feedback loop is operated on the 3^{rd} pair (crystals 5 and 6) using ref. oscillator frequency of 10 Hz
Angular stability of the 3rd pair

Voltage to angle conversion factor: $\gamma \simeq 7 \mu \text{rad/Volt}$

Reliable operation of the feedback is achieved with 4-6 mV amplitude of the ref. oscillator \rightarrow 50 nrad angular fluctuations
The output intensity (green) is tracking an input x-ray intensity on the 3rd pair (red) while the correction signal (brown) drifts slowly to provide compensation.

The large peak in the correction signal - refill of liquid N\textsubscript{2} for the 2nd pair: the output intensity remains stable.
Operation

- two feedback channels
- remotely controlled (EPICS, SPEC)
- now employed in user operations
Summary

- ≈ 50 nrad stability is demonstrated
- the old simple technique is applicable to high resolution optics
- substantial improvement in beamline performance
- encouraging first step towards stabilization of the XFEL O cavity

Future work:

- demonstrate 10 nrad stability
- development of a multi-channel feedback system
- stabilization of multiple optical axes using one common detector
Acknowledgments

Jeremy Kropf (ANL) Tim Roberts (APS)
Stan Whitcomb (LIGO) Ayman Said (APS)
Mark Rivers (APS) Mary Upton (APS)
Thomas Gog (APS) Alessandro Cunsolo (APS)
Thomas Toellner (APS) Xuesong Jiao (APS)
Deming Shu (APS)