APS-XSD Detector Workshop

Patricia Fernandez – Organizing Committee Chair

Organizing Committee members: Ercan Alp Klaus Attenkofer Keith Brister Peter Lee Mark Rivers George Srajer Jin Wang

TWG Meeting, June 15, 2006

APS-XSD Detector Workshop

This one-day workshop is being organized upon request of the APS X-ray Science Division (APS-XSD) management.

Objectives:

- a. Develop a coherent plan for detector activities at the APS that can be incorporated into the APS Renewal upgrade proposal to DOE.
- b. Provide XSD management with a comprehensive list of current and future (3-5 years) detector needs at APS beam lines and possible ways to address these needs.

Logistics:

The all-day workshop will be held on Friday, July 21, 2006, in Building 401, Room A5000 – Time and agenda TBD

APS-XSD Detector Workshop

 In preparation for the workshop, the organizing committee solicited information on current and future detector needs from ~ 80 beam line scientists representing all APS sectors.

•We received 17 responses, representing 15 sectors.

•We will use this information and your contributions today to finalize the workshop agenda.

•Most of the speakers will be internal. Where appropriate, we will ask the speakers to present the needs of the community that they represent.

•We will have a few non-APS speakers to discuss strategies for detector development, particularly related to collaborations with other institutions.

Summary – E dispersive (1)

Application	Current characteristics	Development direction	Submitter
Microprobe; fluorescence imaging; dilute XAFS	7-, 13-element Ge from Canberra (OK for BM, saturates for ID), long shaping time to get $\Delta E/E=2\%$.	50-100 element SDD: higher count rates (hexagonal SDD from Ketek).	Steve Heald
Micro fluorescence	Multi element solid state detector (Ge?).	Larger area multi-element detector, minimize sample- detector distance for each element.	Qun Shen
Nanoprobe - fluorescence	SDD array: 50 kHz, $\Delta E = 180 \text{ eV}$ at 5.9 keV; but small area 170 mm ² ; only 350 µm Si, ~ 10% absorption at 30 keV.	Increase solid angle; thicker for better efficiency at higher energies.	Jörg Maser
Micro-XRF, micro- XANES	Canberra LEGe, Vortex SDD, good E resolution but small solid angle.	Fluorescence detector, >2π sr coverage; compact; no LN2; < 20 elements. To be developed by industry (SDD).	Barry Lai

Summary – E dispersive (2)

Application	Current characteristics	Development direction	Submitter
XSW measurements (fluorescence)	Canberra LEGe; Vortex SDD.	Better E resolution. Higher efficiency for E > 17 keV. Higher count rate.	Paul Fenter
XSW protein crystallography		XRF detector array, large solid angle, high count rate → SDD. Collaborate w/ industry; Hasylab/ESRF collaboration.	Mike Bedzyk
High resolution inelastic x-ray scattering	CdTe Amptek, single and 4-element array; ΔE = 290 eV at 5.9 keV (typ.).	Compact design to pack detectors closer together (9, then 21). Work w/ supplier.	Ercan Alp
Resonant inelastic x- ray scattering (5-12 keV)	Si diode (Amptek); ∆E < 200 eV at 5.9 keV.	PAD (Pilatus?): low noise, good efficiency at 5-10 keV, packaging. Siddons 1-dimensional array.	Ercan Alp
Energy dispersive diffraction, high energy ~ 80 keV		STJ or similar; $\Delta E = 10 \text{ eV}$ at 80 keV; pixellated detector.	Dean Haeffner

Summary – λ dispersive

Application	Current characteristics	Development direction	Submitter
Microprobe; dilute XAFS	Bent Laue ($\Delta E/E=0.005$, poor background rejection, large solid angle) and WDX (low background, $\Delta E/E<0.002$, tiny solid angle).	Combine ΔE/E and low background of WDX with solid angle of bent Laue detector (Attenkofer & Adams). Multilayer analyzers for low energies.	Steve Heald
High resolution inelastic x-ray scattering	Curved, diced analyzers produced at APS. Difficult to make, expensive.	Continue work w/ XSD-OFM group.	Ercan Alp
1 eV resolution IXS x-ray Raman scattering	LERIX at 20-ID: 19-element bent SI analyzers, 1% of 4π sr.	LERIX-2: collect 25% of 4π sr.	Jerry Seidler

Summary – Timing

Application	Current characteristics	Development direction	Submitter
Time-resolved XAFS, need to tag individual bunches in 24 bunch mode (153 ns)	APD (I0) and large area plastic scintillator (fluorescence); max rate 150 kHz (linearity issues, has to attenuate the beam).	Near future: multi-element APD to increase count rate by 50x, combined w/ WDX \rightarrow fluorescence detection w/ ΔE and Δt resolution.	Steve Heald
Nuclear resonant scattering	APDs: 9 orders of magnitude dynamic range; 1 ns time resolution; low noise ~ 0.01Hz; 100 µm thick Si.	Stacked for better efficiency; 0.1 ns time resolution; packaging; electronics; large quantities needed.	Ercan Alp
Nuclear resonant inelastic scattering	APDs: 9 orders of magnitude dynamic range; 1 ns time resolution; low noise ~ 0.01Hz; 2x2 arrays; 100 µm thick Si.	Need 2x2 or 3x3 APD arrays; can also use linear arrays w/ 30-50 elements.	Ercan Alp
Materials science - time resolved diffraction	APDs, fast scintillators, InGaAs diodes, SDD.	Need to gate pulses in 24 bunch mode. Streak camera w/ < 1 ps resolution (commercial?). APD arrays. SDD arrays.	Eric Dufresne
Materials science - time resolved diffraction		Advanced x-ray chopper, capable of hybrid mode (1.59 µs) or 24- bunch mode (153 ns) selection.	Eric Dufresne

Summary – Area (1)

Application	Current characteristics	Development direction	Submitter
Surface scattering measurements	CCD Roper 1" square, 20 µm pixels, w/ 1:1 FO, 1-2 sec readout, dynamic range 10 ⁵ - 10 ⁶ , fast x-ray shutter.	Perhaps faster readout. Real time data (electronic gate): Pilatus w/ smaller pixels, more compact.	Paul Fenter
Interfacial x-ray microscopy	Use CCD w/ optical lenses looking at phosphor.	Flux limited. Need small pixels.	Paul Fenter
Microdiffraction	Bruker CCD.	Use detector for dark field imaging, need \sim 1-10 fr/sec \rightarrow commercially available?	Steve Heald
Microscropy; coherent imaging		Pixel size < 20 μ m; dynamic range > 10 ⁶ ; DQE > 30%; 2Kx2K pixels minimum; radiation resistant \rightarrow Pilatus w/ smaller pixels. Will need 4-5 detectors.	Qun Shen
Protein powder diffraction	mar345, 300 µm PSF.	CCD w/ 30-50 µm res, 75x75 mm², can be tiled, uses Kodak chip, 2Kx2K 25 µm pixels.	Robert Von Dreele

Summary – Area (2)

Application	Current characteristics	Development direction	Submitter
Nanoprobe - scanning probe phase contrast imaging		Configured Si detector.	Jörg Maser
High energy (> 50 keV)		1 μm resolution; area > 2x2 mm ² ; good efficiency for E > 50 keV; stackable.	Dean Haeffner
SAXS and high q-resolution mapping at high energies (> 50 keV)		PSF < 40 µm; 2Kx4K pixels; readout > 1 fr/s; leaded glass FO to suppress direct x-rays.	Ulrich Lienert
Materials science (x-ray scattering techniques)	mar345, mar165, GE a-Si.	Higher frame rates; large area; efficient at 16 keV.	Doug Robinson
PDF measurements (~ 120 keV); SAXS/WAXS	GE a-Si.	Large area; < 100 µm resolution; 10-100 fr/s; external gate; hole in center for SAXS/WAXS.	Dean Haeffner

Summary – Area (3)

Application	Current characteristics	Development direction	Submitter
3-D diffraction maps	Roper 2Kx2K, 1:1 FO, 2 pixel PSF, 8 sec full readout, but collect data in <0.1 sec.	Faster readout CCD, e.g. LBNL/APS collaboration on 100-200 fr/s, 16 bit CCD; data analysis software. Also, a-Si detector 20x more sensitive than GE at lower energies (< 40 keV).	Gene Ice
Materials science - time resolved diffraction		Gated area detector (Pilatus): Mpixel, 25-100 µm pixel, 12-16 bits, 10 ns gate.	Eric Dufresne
XPCS	SMD CCD camera.	Direct detection CCD; fast readout 1-10 kHz, w/ ROI; Peltier cooling; inexpensive chip.	Michael Sprung
SAXS/TRSAXS	TRSAXS detector, $\Delta t = 300$ ns, can also be used as static SAXS detector w/ good SNR.	Use TRSAXS detector technology for transmission SAXS detector to cover large reciprocal space (10 ³), w/ time resolution < 100 ps.	Jan Hessler
SAXS/TRSAXS on biological samples - muscle diffraction	Custom 160x80 mm ² , high sensitivity CCD.	Larger area CCD (300x300 mm ²); high sensitivity; 1 kHz frame rate. Collaborate w/ industry (EMCCD). Make larger TRSAXS detector (Hessler et al.).	Tom Irving

Wish list: Energy/wavelength dispersive detectors

For diverse applications :

• Fluorescence arrays: modular multi-element SDD arrays, large solid angle coverage. Thicker sensor for higher energies (~ 20 keV).

For custom applications:

- Custom array for high energy resolution backscattering geometry.
- Very high resolution at high energies, ΔE ~ 10 eV at 80 keV: STJ detector or similar.
- Adaptive-optic x-ray fluorescence analyzer.
- Curved, diced analyzers for high resolution IXS.
- LERIX-2 (Seidler et al.).

Wish list: Timing detectors

For diverse applications :

- Single APD: custom packaging and electronics; improved time resolution; stacked for better efficiency above 10 keV.
- APD arrays electronics: can be reused for specific applications.

For custom applications:

- APD arrays sensors: 2D or linear; custom geometry.
- Streak camera: less than 1 ps resolution.
- x-ray chopper for hybrid or 24 bunch mode.

Wish list: Area detectors

For diverse applications:

- Pilatus PAD: smaller pixels.
- a-Si flat panel detector: for E ~ 20 keV and E ~ 100 keV; frame rate ~ 30 Hz; large area; < 100 µm pixels; electronic gate.
- CCD: fast (10-100 Hz) and faster (1-10 kHz) readout; small pixels < 20 µm; 2Kx2K pixels; direct detection or FO/lens coupling; possibly tiled for larger area.

For custom applications:

- Time-resolved SAXS detector (Hessler et al.): optimum design for specific application; very large area; time resolution < 100 ps.
- Configured Si detector: custom segmentation for specific application.
- High spatial resolution detector for E > 50 keV: 1 µm resolution; stackable.

Next Steps

- Workshop agenda based on the information received. Please continue to send us your requests.
- Speakers will be asked to present the specific desired detector characteristics and the science driving these requirements.
- The workshop committee will generate a report to be submitted to APS management. The report will be circulated for comments among the workshop participants.