Fast Fly-Scanning for X-ray Microscopy

Stefan Vogt Sector 2 - XFD

I. McNulty, D. Paterson, D. Legnini; XFD R. Sluiter, T. Mooney, K. Goetze; BCDA M. Rivers; CARS

- Introduction & Motivation
- Examples
 - fly scanning with stepper motors @ 2-ID-E
 - fly scanning with piezos @ 2-ID-B
- Setup & Configuration
- Cost & Efforts
- Summary & Outlook

'Image' is built by raster scanning sample through focal spot

- need to oversample (i.e., fine scans with many pixels)
 - to acquire high quality images, which show object details
 - not to miss important object features (e.g., in fast overview scans)

but:

- overhead for step scans w/ stepper motor driven stages (e.g., Newport UTM series): ~100ms / pixel (due to software, motor accel/deccel, ...)
- overhead for step scans w/ piezo driven stages ~20ms / pixel

- APS: High brilliance source ? focused flux typically 10⁹ photons/s
- for contrast modes using the transmitted signal, target: S/N = 3 for structure with 5% contrast
 ? need ~10⁴ photons/s
 ? dwell time = 10 µs at the photon statistics limit

? overhead can be more than 1000x larger than dwell time !

In extension: fly scans can be tremendously useful for any situation where the the data acquisition rate is not limited by photon statistics (i.e., physics).

Example @ 2-ID-E : mammalian cells, absorption and differential phase images using ion chambers

step scan w/ stepping motors: 50x50 microns, 0.4x0.4 microns steps detected flux: ~ 4*10^9 ph/s duration: ~4h

fly scan w/ stepping motors: 50x50 microns, 0.2x0.2 microns steps

Even with standard detectors, fly scans can enable detailed pre-view scans

Example @ 2-ID-E: differential phase images of cardiac myocytes with dedicated detector

Example @ 2-ID-E: differential phase images of cardiac myocytes with dedicated detector

0.1 ms dwell total scan time: ~30 min 1 ms dwell total scan time: ~1 h

remaining overhead: flyback & y motion

Example @ 2-ID-B: Transmission X-ray Image of Intel Semiconductor Chip

'ringing'

piezo stage 50 µm x 50 µm fly-scan 50 nm x 50 nm pixels 2 ms/pixel dwell

Total scan time: 1.5 h

Counts/pixel~ 9000RMS noise/pixel ~ 110Shot noise limit ~ 95

Compare: estimated scan with step scans: 15 h ! (w/ 40 ms /pixel overhead)

Hardware Setup

- install drivers
- for fly scan @ desired dwell time, calculate & set motor speed, # of points, ... (e.g., with user transforms)
- possibility to use dedicated scanrecord, for fly scans only, or use other programming language to 'poke' values into appropriate PVs
- user calc to provide delay between arming of MCS and starting of motor movement; need to use scan positioner in absolute mode
- for slow scans (> 10 ms dwell) possibility to use scan pause to speed up 'fly-back'
- possibility to setup MCS to function as a 'normal' scaler

Cost & effort

Cost:	
 – essential: multi channel scaler 	
e.g: Struck SIS3801	3.5 k\$
– possibly: IP330	~2.5k\$
 possibly: NOVA V-to-F 	3.5k\$ /4 channels
• Effort:	
 install software: 	2h
 setup & test software w/ templates: 	6h
 Develop/implement GUI 	6h
 Tweaking 	6h

Summary

- For ~3.5k\$ and 2 days work a fly scan system can be implemented
- An increase in the data acquisition rate of an order of magnitude can be expected for all signals that are not photon limited

- over-scan to eliminate acceleration/decceleration artifacts
- option in scanrecord to trigger (arm) a detector with a variable delay before starting a scan motion
- allow for fast fly back speeds and slow 'fly scan' speeds to further reduce overhead
- software switch to select motor to drive fly scans