Synchrotron Circulating Beam Parameters and Photons to Sample

Topics

- A Little about the Beam
- X-ray from Undulator and Bend (Wiggler) Magnet
- Spatial Aspects
- Propagation with/without focusing
- Flux and Brilliance
- Power
- Source Coherence

P. J. Viccaro October 17, 2002

$$\sigma_{x} = v \overline{\varepsilon_{x} \beta_{x} \sigma'_{x}} = v \overline{\varepsilon_{x} / \beta_{x}}$$

$$\sigma_{y} = v \overline{\varepsilon_{y} \beta_{y} \sigma'_{y}} = v \overline{\varepsilon_{y} / \beta_{y}}$$

Neglecting Dispersion η !

•Gaussian distribution in beam position (size) and trajectory angle around golden orbit

- •Transverse "Betatron" oscillations around orbit result in beam "Waists and Bulges"
- $\bullet \sigma_{x,y}$ and $\sigma'_{x,y}$ are functions of position on golden orbit

•Described by β_x and β_y which are functions of position on golden orbit (beta-functions)

•Emittance $\varepsilon_{x,y} \sim \sigma_{x,y} \times \sigma'_{x,y}$ Constant Over Orbit • ε_x and ε_y Invariant • $\varepsilon_x = (1-k)\varepsilon$ $\varepsilon_y = k\varepsilon$ k is coupling parameter

Source, Optics, Sample

Insertion device (ID) x-ray source: Periodic structure of magnetic poles resulting in a periodic magnetic field over its length. The ID is characterized by the "deflection parameter", $K = 0.934\lambda_0B_0(T)$, with peak field, B_0 , and magnetic period, λ_0 .

The so-called <u>wigger</u> regime (broadband output) is characterized by $K \ge 5$ and the <u>undulator</u> regime (polychromatic output), by $K \le 2$.

- Source required and beam delivery driven by science and experiment/sample
- Sample presents a "sample acceptance" determined by:

The effective area (sample size, apertures, etc.) The angular convergence required over the effective area The spectral purity ($\Delta E/E$) required The required rate of Photons within the acceptance

• Sample acceptance related to **source** and **brilliance**

X-ray Source Properties

Some Numbers

Emittance: 3.0nm-rad; Coupling ~2%

	ID	BM	
Source Size			
S _x	239.5 µm	102.8 µm	
s _y	15.4 μm	35.1 µm	
Divergence			
s ' _x	14.4 µrad	60 µrad	
s' _y	3.9 µrad	2.1 µrad	
Beta Functions			
b _x	14.40 m	1.94 m	
b _y	3.95 m	20.55 m	

See http://www.aps.anl.gov/aps/frame_operations.html For current APS storage ring operating parameters

X-ray Source Properties

Propagation and Focusing

• For Bending Magnet (and Wiggler)

Propagation depends on σ'_{R} , $\sigma_{x,y}/R$, and $\sigma'_{x,y}$ and orbit (horizontal)

 $\sigma'_R \sim 1/\gamma \sim 73~\mu rad$ much larger that beam parameters in vertical direction and dominates propagation

For Focusing,

beam 'size' σ_{x} and σ_{y} (nearly) determine focal spot size at sample and

 σ'_{R} (and focal element distance/angle) determine coverage AND final divergence of focused beam

• For Undulator on APS

Beam and undulator radiative properties are relevant

 $\Sigma_{x,y} \sim \sigma_{x,y} \sim 240 \ \mu \text{ and } 15 \ \mu$ $\Sigma'_x = \sigma'_x \quad \text{for the APS}$ $\Sigma'_y = v \overline{\sigma'_y^2 + \sigma'_R^2}$

For **propagation** w/ no focusing, divergence **dominates** For **focusing**

Beam size determines the focal spot size

Total **divergence** determines coverage and final divergence of focused beam

X-ray Source Properties Some Numbers

Radiative (Diffraction Limited) Undulator Divergences

 $\sigma'_{R} = v \overline{\lambda/2L}$, λ is x-ray wavelength

Harmonic	(1 st)	(3 rd)	(1 st)	(3 rd)
(keV)	8	24	12	36
σ'_{R} (µrad)	6	3.5	4.6	2.7

Compare to

 $\sigma'_{x} \sim 14 \mu rad and$ $\sigma'_{y} \sim 3.9 \mu rad$

In vertical direction, e-beam divergence 'important' only for higher harmonics.

X-ray Source Properties

Flux and Brilliance

- Flux, *F*, and On-Axis Brilliance (Brightness), B(0,0) Invariant under linear (good optics) transformations
- Related

 $B(0,0) = F / (4\pi^2 \Sigma_x \Sigma_y \Sigma'_x \Sigma'_y) \text{ in ph/(s mm^2 mrad^2 0.1\% BW)}$

X-ray Source Properties Power

Spatial distribution of power depends on

 $1/\gamma$ vertical

e-beam orbit horizontal

Very little dependence on ring emittance except for special cases of low-K undulators (weak field)

For bend magnet and wiggler,

x-ray and power envelopes approximately same

For undulator, x-ray envelope

 $1/(10\gamma)$ vertical (approximately) depends on e-beam orbit horizontal

Power management possible on undulator

With minimal loss of usable x-ray!

Coherence

Coherence between

A and B: Longitudinal determined by the spectral purity $\Delta\lambda/\lambda$

B and C: Transverse determined determined by source phase space volume

For an extended source of size σ and divergence σ' the largest phase volume which can emit with full spatial coherence is

 $V \sim 2\pi \sigma_R \sigma_R' = \lambda/2$ For $\lambda \sim 1$ Å, $V \sim 5 \ 10^{-11}$ m-rad

The coherent fraction of a beam, in one dimension, is given by

 $f \sim \lambda / (4\pi \Sigma_x \Sigma_{x'}) \sim \lambda / (4\pi \sigma_x \sigma_{x'})$

Current parameters for Undulator A are

 $\sigma_x = 240$ microns $\sigma_y = 15$ microns

 $\sigma_{x'} = 14$ microradians $\sigma_{y'} = 3 \sim 5$ microradians

y coherence fraction ~ 0.1 ! (a lot)

x coherence fraction ~ 0.001

The smaller the $\mathcal{E}_{x,y}$ the larger the coherence factor!

