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Coherent x-rays reveal atomic dymmlcs and function
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APS Today: b e
X-ray photon correlation spectroscopy (XPCS) O Doy o 100

reveals equilibrium dynamics in strongly-scattering
systems, e.g. 100 nm fluctuations of particles,
membranes, soft materials, etc.

Today: XPCS autocorrelation g, of oil emulsion,
millisecond dynamics of sub-micron droplets.

. . _ diffusion diffusion + evap/condens
With APS-U: 4 orders of magnitude gain !!! ; - —
Coherent flux of APS-U opens uncharted territory:
* nanosecond dynamics, atomic-scale

fluctuations
e two-time correlations in non-equilibrium
processes
* mechanisms of materials synthesis
* molecular motors e.g. mitochondria
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 space-time and higher order correlations, APS-U: Simulated two-time correlation functions
inaccessible today from surface islands during layer-by-layer crystal
 deformation in materials under extreme growth, will reveal nature of atomic dynamics,
conditions enable synthesis of advanced materials, e.g. high-
e microfluidics for sensors, medicine voltage electronic materials for a smart power grid



XPCS with more complex correlations

e "Classical" XPCS: equilibrium fluctuations, single q:
(I(g.01(g,1+An), ~(I*(q,))
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e Equilibrium or steady-state, two-q correlations:
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* Non-equilibrium two-time, single-q correlations:
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Materials deformation revealed with coherent x-rays

Steady-state, two-q correlations

Opportunity

® Strain tensor mapping inside of
deforming material, including fluids
and glasses, by using space-time
cross-correlation analysis of x-ray
speckle (XPCS)

® 3-D variation of full strain and stress
tensors inside materials evolving in
real time under loading

Gains from APS MBA Lattice
® Open up studies into ns range
® Sub-micron spatial resolution
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Speckle shifts superimposed on scattering trom a 20
micron region of a rubber sample undergoing flow in
a stress-strain cell. Shifts are scaled by 200. (M.
Sutton, unpublished)

Now: New coherence-based techniques being developed with coarse resolution

APS MBA upgrade: First direct view of molecular flow will be enabled by factor of 10,000

to 1,000,000 improvement
S




From recent APS-U science workshops:
Materials and heterostructure synthesis and stability

Challenge: Control synthesis, defect structure, and (meta-
)stability in operating environments of single- and multi-phase
materials and heterostructures

Hard X-ray techniques allow in situ, real-time studies of atomic-
scale mechanisms during processing

APS-U enables coherent X-ray imaging and XPCS studies of
dynamics

Examples of "first experiments":

Characterize an individual point defect

Observe dopant interactions with dislocations, step edges during growth
Observe nucleation of a misfit dislocation

Correlations in island nucleation during layer-by-layer growth

Domain dynamics in strained heterostructures

Mass transport by flow vs. diffusion



In situ studies of synthesis using hard x-rays

= Hard x-rays penetrate chamber and harsh environment to allow in situ studies
= New diffractometer design enables in situ coherent x-ray studies of growth

— Long sample-to-detector length
— High stability hexapod

— Fully automated nitride MOCVD system




Intensity

CTRs and growth modes
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= Anti-Bragg positions on
Crystal Truncation Rods
(CTRs) highly sensitive to
surface morphology

= |ntensity evolution shows

growth mode, indicates
balance between deposition,
surface transport,
attachment at steps
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Effects of surface orientation on atomic-scale
mechanisms of crystal growth

c-plane surface m-plane surface a-plane surface
[0001] out of plane [0001] vertical [0001] vertical
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Ga sites in wurtzite GaN structure; blue shows islands at 50% coverage

e Step energies, adatom diffusivities are expected to be highly anisotropic on m- and
a-plane surfaces of GaN
* What effects does this have on growth mechanisms?



Growth modes vs T on c-plane and m-plane GaN

Growth of 22 A of GaN at 0.3 A/s
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c-plane: m-plane:
No layer-by-layer growth region See all 3 growth modes:
 high Ehrlich-Schwoebel barrier step-flow, layer-by-layer, 3-D

for diffusion over island edges?
E. Perret et al., APL 105, 051602 (2014)



L (recip. latt. units)

\______
Incoherent scattering gives average island spacing

Intensity map versus time for the Diffuse scattering at 0.5 ML
(0.50-0.5-2) CTR position, GaN m-plane Peak position gives island spacing S =c, / AL

T = 893K
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Impact of coherent x-ray studies
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e Coherent x-ray studies will reveal island arrangements and equilibrium dynamics
e X-ray Photon Correlation Spectroscopy (XPCS) studies of island dynamics may be
feasible with current source in favorable cases
e Bragg Coherent Diffraction Imaging (BCDI) of static islands may be feasible now;
real-time BCDI studies of dynamics will require the APS Upgrade
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SOS (2D) KMC simulations of growth

(b) surface transport by

(a) surface transport by diffusion only evaporation/condensation and diffusion

0.00 kL, kirme = 0 0.00 kL, kirme = 0

simple cubic lattice
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Surface XPCS using coherent X-rays: sensitive to
both transport dynamics and mechanisms

Standard XPCS will allow observation of rates of atom transport and step fluctuations

Two-time correlations will reveal persistence of island nucleation positions on
succeeding layers, which can be related to transport mechanisms

Simulated two-time correlation functions in speckle from islands during LBL growth

(a) surface transpor by diffusion only (b) surface transpon by evap/cond and diffusion
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Steps on GaN c-plane |l 2Qlcl o 10.0mY

Character of monolayer
(¥2-unit-cell-height) steps
varies with orientation and
alternates between layers.

What are their dynamics?
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Reciprocal space signatures of surface step
structures

Opportunity for two-q correlations in equilibrium dynamics
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FIG. 1. Schematic of the crystal truncation rods from surfaces
with (a) large (0001) facets; (b) monolayer-height steps; and (c)
double-height steps. The index L is in reciprocal lattice units (r.l.u.).

M. V. Ramana Murty et al., PRB 62, R10661 (2000)
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Coherence characterization at 12I1D-D

Used diffraction from slits as function of
width to characterize beam divergence
At 12 keV:

Horizontal: 27.4 urad (2.9 times source)
Vertical: 18.3 urad (47.4 times source)
Loss in brightness: factor of 140

Likely cause: 8 unpolished Be windows
Plan for 121D windows/optics upgrade
being implemented
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Summary and outlook

In situ XPCS studies will be a powerful technique to reveal atomic-scale
mechanisms during materials synthesis

More complex correlations (2 g, 2 t, 2 g — 2t) can be explored with increased
coherent flux

A new hexapod diffractometer and growth system are being commissioned
Excellent opportunity for in-situ, high-energy coherent beam studies of
materials synthesis and processing at a new optimized sector 28
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