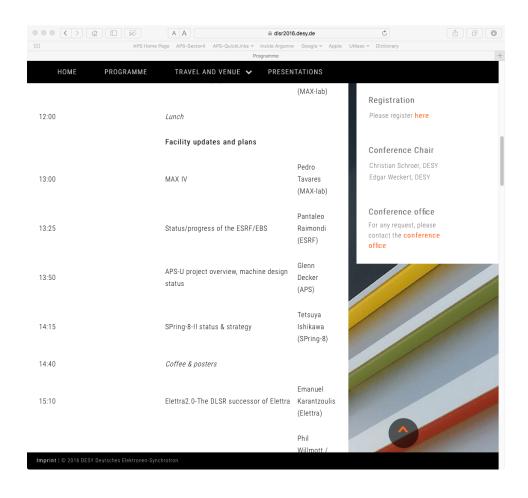


Highlights from the 5th Diffraction Limited Storage Ring workshop DESY, Hamburg, Germany

Jonathan Lang


Advanced Photon Source

Argonne National Laboratory

APS-U Forum March 24, 2016

5th DLSR - Workshop Program

Brought together:

- Facility operations
- Accelerator physics
- Beamline technologies
- DLSR scientific drivers

2011 - Cornell

2012 - Spring-8

2013 - Stanford/SLAC

2014 – Argonne/APS

2016 – DESY/Hamburg

~100 participants ~35 Talks over 2.5 days

DLSR - Workshop Program

Day 1

Keynotes:

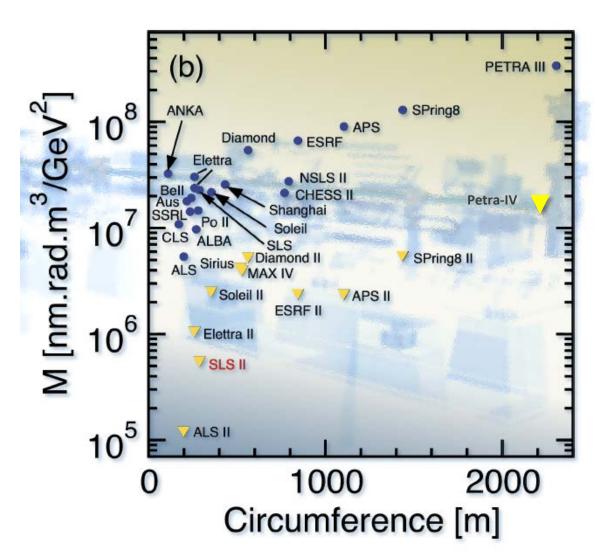
- Harald Reichert (ESRF) Science Opportunities at DLSRs
- Mikael Eriksson (MAX-IV) DLSR Machine Physics

Facility Updates

Day 2


Science opportunities Challenges in DLSR machine physics

Day 3


Beamline technologies and instrumentation challenges

DLSR - Workshop Program - Facility Updates

M. Borland, J.Phys. Conf. Ser. 425, 042016 (2013)

Courtesy P. Willmott (SLS)

DLSR - Facility Updates

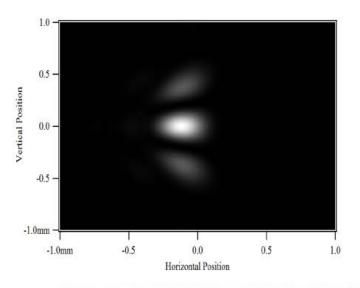
Facility	Talk	E (GeV)	E (pm-rad)	Year
MAX-IV	P. Tavares	3	328	2016
SIRUS	H. Westfahl	3	236	2019
ESRF-II	P. Riamondi	6	140	2020
APS	G. Decker	6	47-68	2021
SLS-2	P. Wilmott	2.4	~150	2024
Spring-8-II	T. Ishikawa	6	190	2020s
Petra-IV	C. Shroer	5	20	2026+
Diamond-II	R. Bartolini	3	100-270	??
Elettra-II	E. Karantzoulis	2	~250	??
Soleil-II	A. Nadji	2.75	~200	??
ALS-U	R. Falcone	2	50	??

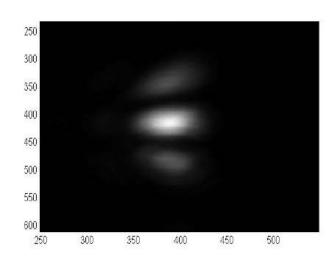
HEPS – China (5 GeV); SLiT-J – Japan (~3 GeV);

DLSR Facility Updates - Max IV

3 GeV Ring Commissioning Timeline

March 2016


DLSR Workshp 2016



DLSR Facility Updates - Max IV

Emittance Measurement

Slide by J.Breulin

320 pm-rad

Sigma polarized SR, 632.8 nm, SRW calculation (left) and measured image (right). The simulation is done for ε_x = 320 pm rad, β_y = 1.5 m.

Both figures show a 2 x 2 mm^2 area of the image plane.

The fringe pattern is too weak to be visible.

Optical magnification of m=-2.28 is taken into account in the SRW model

Horizontal opening angle: 6 mrad Vertical opening angle: 8 mrad

Exposure time: 2.9 ms

March 2016

DLSR Workshp 2016

DLSR Facilities updates Sirus

Building construction (~20% concluded – 03/2016)

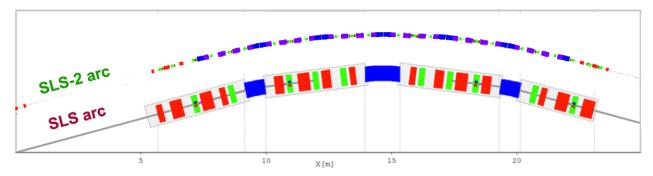
Oscar Vigna (oscar.vigna@lnls.br)

Diffraction Limited Storage Rings workshop DESY, March 9th, 11th, 2016.

Slide courtesy of Harry Westfahl
Expected first light/experiments early 2019

DLSR Facility Updates - ESRF

Design finalized; Currently procuring magnets


Slide courtesy of P. Riamondi

The European Synchrotron ESRF

DLSR - Facility Updates - Swiss Light Source

Looking at designs with reverse bends (585° & 488°)

- 12×TBA \Rightarrow 12×7BA lattice: $\frac{1}{2}$ + 5 + $\frac{1}{2}$ cells of LGB/AB type
- Circumference $288.00 \,\mathrm{m} \Rightarrow 287.25 \,\mathrm{m}$
 - in order to keep undulator positions (source points)
- Periodicy 3: 12 arcs and 3 different straight types:
 - $6 \times 4 \text{ m} \Rightarrow 6 \times 2.9 \text{ m}$ $3 \times 7 \text{ m} \Rightarrow 3 \times 5.1 \text{ m}$
 - split long straights: $3 \times 11.5 \text{ m} \Rightarrow 6 \times 5.1 \text{ m}$
- beam pipe: $64 \text{ mm x } 32 \text{ mm} \Rightarrow \emptyset 20 \text{ mm}$

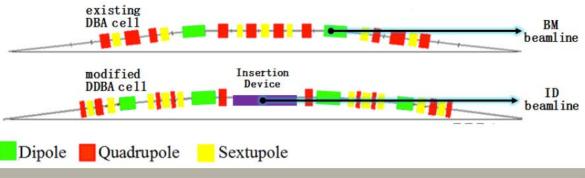
⇒ magnet aperture Ø 26 mm

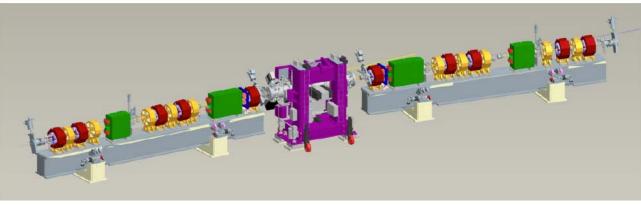
A. Streun, PSI

Swiss Light Source Upgrade SLS-2

5th DLSR workshop, March 9-11, 2016, DESY Hamburg

3


Slide courtesy of Andreas Streun

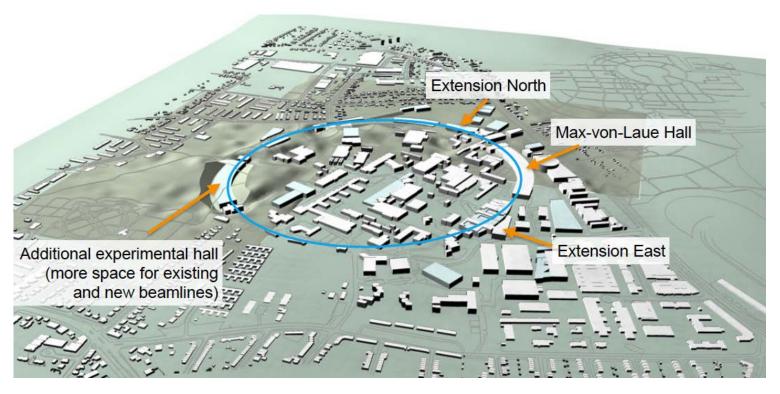

DLSR - Facility Updates - Diamond-II

Use 4BA (or 6 BA) to convert BM to ID ~3m

One DDBA cell in the existing lattice

One DDBA cell is going to be installed in the existing lattice in order to have one more beamline (no significant gain in emittance)

Slide courtesy of R. Bartolini


DLSR - Facility updates - Petra-IV

Circumference 2300m → ~20 pm-rad

PETRA IV at DESY in Hamburg

Transform PETRA into ultra-low emittance ring

Starting: 2026

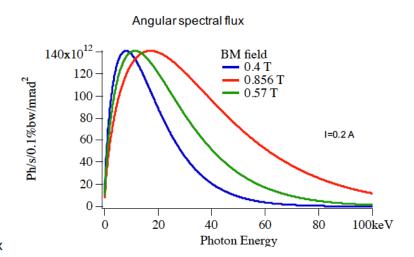
Slide courtesy of Christian Schroer

DLSR - Facility Updates - Bending Magnets

What about bending magnets?

ESRF CONTEXT

ESRF today has DBA 6 GeV lattice


BM beamlines use X-ray from

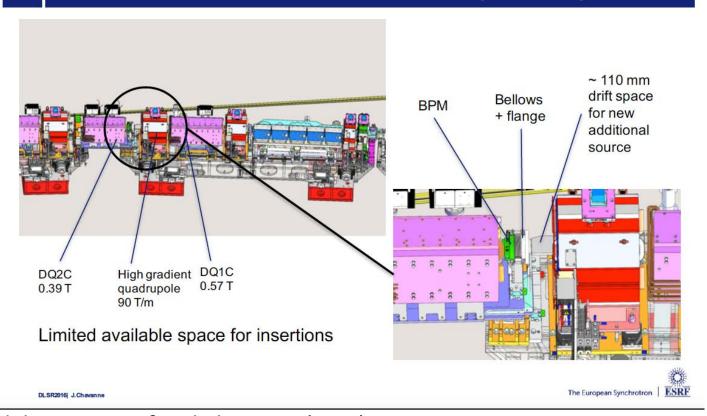
- 0.856 T dipole E_c=20.5 kev, 6 mrad max
- 0.4 T soft end E_c=9.5 keV, 6 mrad max
- · Very productive Beamlines

ESRF II will be 7BA 6 GeV lattice

Available BM field for Beamlines:

- 0.39 T dipoles E_c=9.3 kev , 2 mrad max
- 0.57 T soft end E_c=13.6 keV, 2 mrad max

DLSR2016 J.Chavanne


Slide courtesy of Joel Chavanne (ESRF)

DLSR - Facility Updates - Bending Magnets

ESRF considering super-bend, 2,3,4,5 pole wigglers (similar to most facilities)

Some designs need to cant quads

GEOMETRICAL CONSIDERATIONS (CONT'D)

Slide courtesy of Joel Chavanne (ESRF)

Nano – Positioning

- Accurracy, speed, and stability
- Experimental and optics (monochromators)
- Vibration reduction

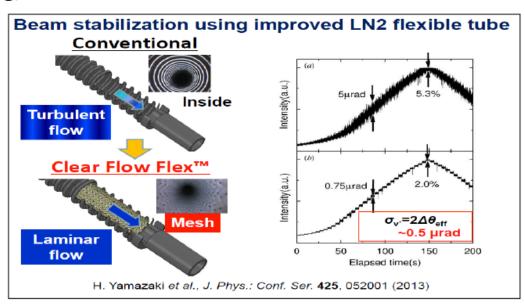
Optics/Coherence

Measure and preserve wave fronts

Detectors

Faster detectors for higher energy

Velociprobe C. Priessner et al. (APS)



15

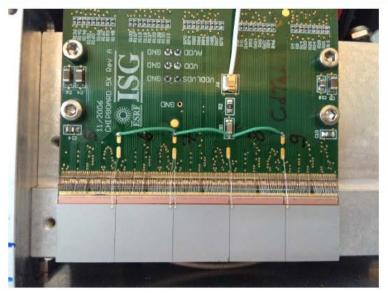
Stability of monochromators -> Coffee break discussions

Reduction of vibration in LN-cooled DCM

 Improvement of conventional DCM: reduction of vibration with cooling; stabilization of mechanics

5 μrad to 0.5 μrad

Need much larger (x10) improvements

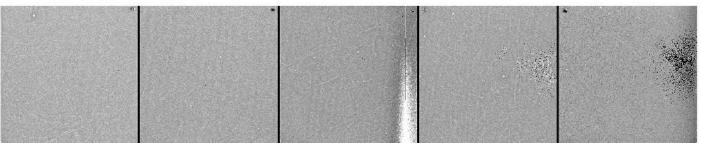

2) New optical scheme

10

Courtesy of M. Yabashi (Spring-8)

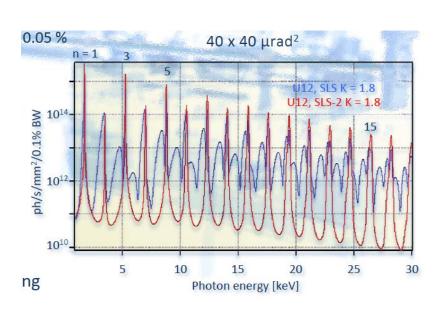
ESRF working on high-Z sensors (CdTe, GaAs, ...) for pixel array detectors

FIRST 5X1 CDTE DETECTOR

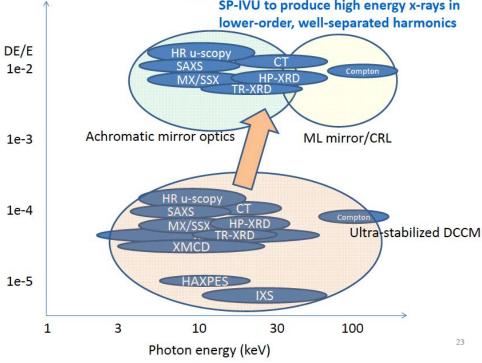


1280 x 256 pixels75 mm x 15 mm field of view

Slim edge sensors (100 um)


30 um gap in between modules

Alignment precision < 1 pixel over the whole width


Slide courtesy of Marie Ruat (ESRF)

- Spring-8 working on wide band-pass optics to take advantage of suppressed off harmonic intensity (SLS)
- Not all techniques need energy resolution of Si/C mono

Courtesy of P. Willmott (SLS)

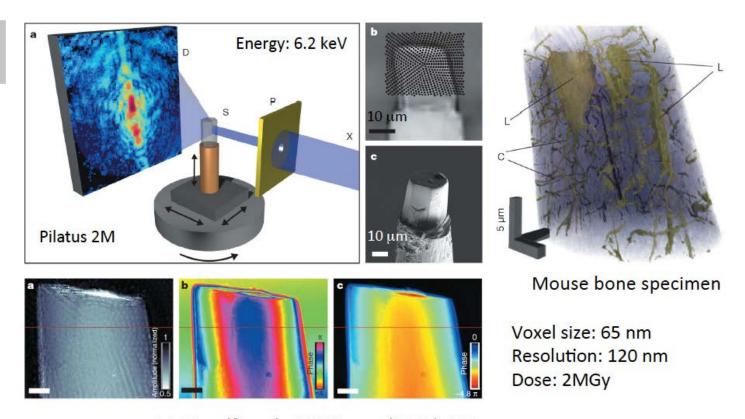
Classification of applications for SPring-8 II SP-IVU to produce high energy x-rays in lower-order, well-separated harmonics

Courtesy of M. Yabashi (Spring-8)

DLSR - Science Opportunities

Nano-focusing

- "The ultimate 3D microscope"
- "Taking flux starved techniques into the nano-world"
 - √ High-pressure
 - ✓ RIXS
- Serial MX (SLS, ESRF, DESY,)
- Looking at materials processes in-situ at ultra-fast time-scales (additive manufacturing)

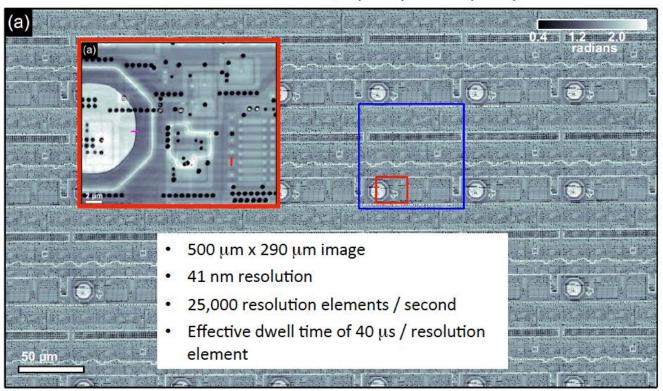

Coherence

- "Atomic scale dynamics down to nano-seconds"
- 10⁴⁻⁶ speed-up in dynamics for XPCS
- XPCS in complex environments
- CDI on nano-particles undergoing chemical reactions

DLSR - Science opportunities

X-ray ptychographic tomography

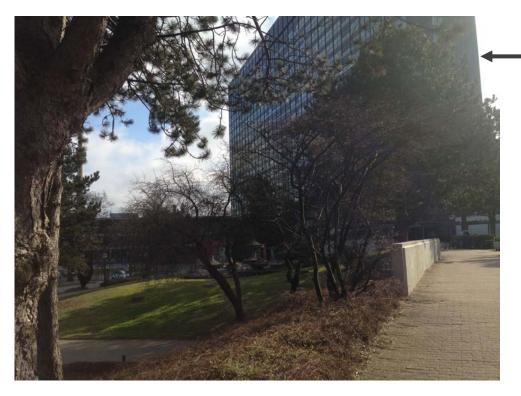
M. Dierolf et al., 467 Nature (2010) 436


Slide courtesy of Ana Diaz (SLS)

DLSR - Science opportunities

Hierarchical imaging using ptychography

The EIGER "selfie" M. Guizar-Sicairos et al., Opt. Express 22 (2014) 14859


Slide courtesy of Ana Diaz (SLS)

DLSR - Safety

Safety doesn't end at the lab gate

Watch out for ice even on travel

Hamburg in March (rain + cold)