PtychoProbe

Stefan Vogt^{1,*}, David Vine², Barry Lai¹, Joerg Maser¹, Ross Harder¹, Antonio Lanzirotti³, Steve Sutton³, David Tiede⁴, Karen Mulfort⁴, Conal Murray⁵, Rafael Jaramillo⁶, Narayanan (Bobby) Kasthuri⁷, Chris Jacobsen^{1,8}, Volker Rose^{1,7}, Shane Sullivan¹, Curt Preissner¹, Eugene Lavely⁹, David Fenning¹⁰, Gayle Woloschak¹¹, Tonio Buonassisi¹²

¹X-ray Science Division, Argonne National Laboratory, ²Advanced Light Source, Berkeley National Laboratory, ³CARS, University of Chicago, ⁴Chemistry Division, Argonne National Laboratory, ⁵IBM T.J. Watson Research Center, ⁶Department of Materials Science and Engineering, Massachusetts Institute of Technology, ⁷Nanoscience and Technology, Argonne National Laboratory, ⁸Department of Physics & Astronomy, Northwestern University, ⁹BAE Systems, ¹⁰University of California, San Diego, ¹¹Radiation Oncology, Feinberg School of Medicine, Northwestern University, ¹²Department of Mechanical Engineering, Massachusetts Institute of Technology

* Argonne National Laboratory, X-ray Science Division, Bldg 438E006, 9700 S Casse Ave, 9700 Argonne, IL email: svogt@anl.gov

The goal of the PtychoProbe (Ptychography + Nanoprobe) beamline is to realize the highest possible spatial resolution X-ray microscopy both for structural and chemical information. The unprecedented brightness of the APS MBA lattice will be exploited to produce a nm-beam of focused hard X-rays to achieve the highest possible sensitivity to trace elements, and ptychography will be used to further improve the spatial resolution for structural components to its ultimate limit. The proposed beamline will enable high-resolution two- and three-dimensional imaging of thick objects and bridge the resolution gap between contemporary X-ray and electron microscopy. Pushing X-ray microscopy into the nanoscale is crucial for understanding complex hierarchical systems on length scales from atomic up to meso and macroscales, and time scales down to the microsecond level, and is applicable to scientific questions ranging from biology to earth and environmental materials science, to electrochemistry, catalysis and corrosion, and beyond.