White Paper (01/25/2016)

A Dedicated Soft X-ray Beamline at APS for Native SAD Phasing and Multi-Dimensional Crystallography Combing X-ray Diffraction and X-ray Absorption Spectroscopy

Principal Developer: Dr. Bi-Cheng Wang SER-CAT, APS and UGA

Contact Information: Dr. Bi-Cheng Wang B204A, Davison Life Science Complex University of Georgia 120 Green Street Athens, GA 30602 <u>bcwang@uga.edu</u> 706-340-5036

Co-Developers and Contact Information:

Dr. John Chrzas Sector 22, Advanced Photon Source Argonne National Laboratory 9700 S. Case Ave. Argonne, IL 60439 <u>chrzas@anl.gov</u> 630-252-0645 Dr. John P. Rose B204B, Davison Life Science Complex University of Georgia 120 Green Street Athens, GA 30602 jprose@uga.edu 706-542-1750

1. Abstract

The scientific need for a dedicated soft X-ray beamline at the APS for Native-SAD phasing of macromolecules was the focus of our Letter-of-Intent in 2010. Through discussions and proof-of-concept studies another uncharted area of scientific exploration, equivalent to <u>site-specific</u> X-ray absorption spectroscopy, is now possible. This is achieved by collecting a number of diffraction data sets at wavelengths that span a metal's X-ray absorption edge and analyzing the metal's anomalous scattering signal. The 4D (position and spectral) information for many elements that are important to biological systems can be obtained using X-rays in the range from 1.48 to 3.10Å. Our proposed upgrade is conceptually equivalent to upgrading from a visible-light black-and-white camera to a color camera (position & spectrum) and offers significant opportunities for advancing new science in biology, chemistry, physics and engineering via its added capability of recording the electronic spectrum of metal atoms by diffraction.

2. Science Case

I. Native SAD Phasing is Maturing

Native single-wavelength anomalous diffraction (Native-SAD) phasing uses the anomalous scattering signal of atoms in the native crystalline samples of macromolecules, recorded from single-wavelength X-ray diffraction experiments. These atoms include sulfur and other light atoms found in native protein,