APS Upgrade & Future Outlook of Sector 3

- 1. Present operations & scientific activities
- 2. Near future plans : 2016-2021
- 3. Life after upgrade: 2022-onwards

APS Upgrade & Future Outlook of Sector 3

1. Present operations & scientific activities

Unique combination of **spectroscopy**, **scattering** and **diffraction**: High pressure, 4-4000 K, in-situ ruby laser, membrane DAC:

DREAM station for Geophysicists & Geochemists

HERIX-3: 6 m arm, 4 analyzer, 2.2 meV resolution One of the five (5) working spectrometers in the world:

Physics, chemistry, biology, geology, mat.sci

1. Present operations & scientific activities @ Sector 3-ID

There are (3) **distinct but integrated** scientific operational modes:

- i) Nuclear resonant COHERENT FORWARD Scattering: NFS or SMS
- ii) Nuclear resonant INELASTIC X-RAY Scattering: NRIXS or NRVS
- iii) Momentum-resolved INELASTIC X-Ray Scattering: HERIX-3

1. Present operations & scientific activities

Nuclear Forward Scattering (Synchrotron Mössbauer Spectroscopy)

- Akin to Mössbauer Spectroscopy performed in the time domain
- valence state
- spin state
- magnetic ordering
- local atomic environment
- under extreme pressure and temperature
- crystalline, amorphous, monolayers, dilute systems
- physics-chemistry-geologymaterials science..

- Vibetional density of states
- Forza comstant and kinetic energy
- sound velocity, shear and compression moduli
- vibrational entropy
- mode Grumeisen constant
- buried monolayers, high-low P/T
- physics-chemistry-geologymaterials science..

Inelastic X-ray Scattering (HERIX-3)

- Akin to Brillouin scattering or
 - phond dispersion relations
- shear and compressional sound
 - Young and shear moduli
- mode softening during phase transitions
 - role of magnetism
 - applicable to nanogram samples, high pressure, low temperature, liquids, glasses
 - physics-chemistry-geologybiology-materials science..

1. Present operations & scientific activities

Time structured determines the scientific use

mixed alpha & epsilon phase of pure iron at 15.3 GPa pressure

Near Future (2016-2021) for Sector 3

Fast Shutter:

A way to manipulate the bunch structure in the future MBA lattice

Currently under construction at Jülich. We expect delivery in 2016.

Polarizer/Analyzer Optics in the MBA-era

Polarizer/Analyzer Optics in the MBA-era

]	Table 2									
Performance	characteristics	of channel-cut	polarizers	using	$\Theta_{\rm B}$	$\approx 45^{\circ}$	Bragg	reflections	in			
silicon/germanium at selected Mössbauer transition energies.												

Isotope	Energy (keV)	$ au_{1/2}$ (ns)	Crystal reflection	$\Theta_{\rm B}$ (deg.)	$\Delta heta^{\mathrm{a}}$ (µrad)	$\int R_{\sigma}^2 \mathrm{d}\theta$ (µrad)	$\delta_{ m o}$
¹⁸¹ Ta	6.215	6800	Si(400)	47.28	142.0	59.8	5.5×10^{-4}
			Ge(400)	44.88	318.0	126.2	4.8×10^{-9}
¹⁶⁹ Tm	8.410	4.0	Si(333)	44.85	44.4	19.0	1.2×10^{-8}
⁸³ Kr	9.410	147	Si(531)	45.86	31.2	14.1	1.5×10^{-5}
⁵⁷ Fe	14.413	97.8	Si(840)	45.10	10.2	6.1	$1.0 imes 10^{-8}$
¹⁵¹ Eu	21.532	9.7	Ge(888)	44.87	0.78	0.15	$1.7 imes 10^{-9}$
			Si(1244)	44.69	0.31	0.26	9.1×10^{-6}
¹⁴⁹ Sm	22.494	7.1	Ge(1193)	45.07	0.55	0.05	$6.0 imes 10^{-11}$
			Si(888)	44.68	0.25	0.21	$9.7 imes 10^{-6}$
¹¹⁹ Sn	23.878	17.8	Ge(1531)	44.73	0.35	0.03	$1.6 imes 10^{-8}$
			Si(1266)	44.63	0.19	0.16	1.5×10^{-5}

^a The first four energies have the same crystal asymmetry factor; the angle between incident beam and crystal surface is 2°. The crystal reflections at the higher energies (>20 keV) are symmetrically cut.

Scientific scope of nuclear resonant scattering

Measurement of thermodynamic and elastic properties of wide range of materials through the measurement of phonon excitation spectrum.

– materials of current technological interest:

energy storage and conversion : Li-ion battery, skutterudites, clathrates, pnictides, multiferroics

- proteins, enyzmes"

- mechanism of metabolic and catalytic reactions
- porphyrins, cubanes, bioinorganic mimics

– minerals:

- crust, mantle, outer core, inner core
- sound velocity, spin state, shear modulus under extreme conditions

nanomaterials,

nanocatalysts, semiconductors, superconductors

- thin layers, multilayers

- buried layers, interfaces, wedges, terraces, magnetism & superconductivity

APS 3-ID: Inelastic and nuclear resonant scattering beamline

Molecular basis for selectivity (or recognition) of diatomic ligands : NO, CO, O₂, OH

One of the important issues in nitrosyl (nitric oxide, NO) iron porphyrinate derivatives, or **hemes**, is to develop a functional understanding of the **molecular basis for selectivity** (recognition) between the diatomic ligands NO, CO, and O₂.

The sensing of these gaseous molecules is predominantly carried out by heme-based proteins. Therefore, heme protein– diatomic ligand interactions continues to be an active area of research.

Binding and release of diatomic molecules may be facilitated by very low frequency doming modes, also referred to as reactive modes. Quantitative information is needed to study the energetics of chemical reactions or conformational changes. They lie at low frequencies and are rarely identified with traditional techniques

Infrared and resonance **Raman** spectroscopy have provided insight into the interplay of structure and function of heme active sites. However, these techniques have some inherent limitations, especially in the low frequency regime where mode assignment is hampered by weak signal, spectral congestion and low sensitivity to isotopic substitution. In nature, NO is discriminated from O_2 by guanalyl cyclase and the NO sensing protein of Clostridium botulinum. Conformational changes in the protein upon ligand binding is a plausible explanation.

C. botulinum bacterium produces *neurotoxins* which causes muscular paralysis seen in *botulism*, and is also the main paralytic agent in *botox*. It is an *anaerobe*, meaning that *oxygen* is poisonous to the cells. *Neurotoxin* production is the unifying feature of the *C. botulinum*. which acts specifically on *neurons* by interacting with *membrane proteins* such as *ion channels*.

Soluble guanalyl cyclase (sGC) is the only known receptor for NO, which leads to at least 200 fold increase in sGC activity. Because nitric oxide has a partially filled pi * orbital, back bonding prefers a bent geometry for the heme-NO complex.

The histidine-iron bond is weakened when NO binding delocalizes electrons to the dz^2 orbital toward the axial ligand, resulting in ferrous heme at the distal position dissociates to a 5-coordinate Fe-NO complex.

Hyrdogenase enzyme

D. Chen, R. Scopelliti, and Xile Hu, Angew. Chem. 2011, 123, 5789 -5791

[NiFe]H₂ase

[FeFe]H₂ase

[Fe]-hydrogenase catalyzes the reduction of methenyl-H₄MPT+ with H₂ to form methylene-H₄MPT and H+.

This reaction is an intermediary step in the reduction of CO2 to methane.

There is still uncertainty in the exact coordination number and geometry of the Fe center. Current data suggest that the Fe center could be either five-coordinate (square-pyramidal) or six-coordinate (octahedral).

In contrast to [NiFe] hydrogenases, [FeFe] hydrogenases are generally more active in production of molecular hydrogen.

This prompted interest in [FeFe] hydrogenase for sustainable production of H_2 .

Understanding the catalytic mechanism of hydrogenase might help design clean biological energy sources, such as algae, that produce hydrogen.

isotopic labeling

Density functional theory (DFT)

• QM modelling is used to determine the electronic ground state of many-body systems in molecules and condensed matter.

• DFT is popular in condensed-matter physics and chemistry. While it can be applied to molecular calculations, the local density approximations is more appropriate for **delocalized electrons**.

- In molecular calculations complex exchange-correlation functionals are needed. For example, B3LYP, a <u>hybrid functional</u> that combines the exchange energy with Hartree–Fock energy is used.
- The adjustable parameters in hybrid functionals are generally fitted to a 'training set' of molecules. (A set of atomization energies, ionization potentials, proton affinities, and total atomic energies)

• The results obtained with these functionals are sufficiently accurate but there is no systematic way of improving them.

• In the current DFT approach it is not possible to estimate the error of the calculations without comparing them to other methods or experiments.

Phonon density of states provides an excellent benchmarking opportunity

• Nuclear resonance is the only technique that gives frequency, displacement amplitude, mode composition, polarization, element and isotope selectivity.

FeTPP(1Melm)NO

Scientific scope of nuclear resonant scattering

Measurement of thermodynamic and elastic properties of wide range of materials through the measurement of phonon excitation spectrum.

– materials of current technological interest:

- energy storage and conversion : Li-ion battery, skutterudites, clathrates, pnictides, multiferroics
- proteins, enyzmes"
 - mechanism of metabolic and catalytic reactions
 - porphyrins, cubanes, bioinorganic mimics
- minerals:
 - crust, mantle, outer core, inner core
 - sound velocity, spin state, shear modulus under extreme conditions
- nanomaterials,
 - nanocatalysts, semiconductors, superconductors
- thin layers, multilayers
 - buried layers, interfaces, wedges, terraces, magnetism & superconductivity

A MÖSSBAUER MICROSCOPE FOR MINERALOGY IN THE SYNCHROTRON AGE

L. Yan⁽²⁾, S. P. Cramer⁽²⁾, J. Y. Zhao⁽¹⁾, T. S. Toellner⁽¹⁾, Z. Cai ⁽¹⁾J. M. Friedrich⁽³⁾, J. Boesenberg⁽⁴⁾, A. Alsmadi⁽⁵⁾, W. Sturhahn⁽⁶⁾, L. Gao ⁽⁷⁾, E. E. Alp⁽¹⁾

(1) Argonne National Laboratory, Argonne, IL 60439, e-mail: <u>alp@anl.gov</u>, ⁽²⁾ University of California, Davis, CA 95616, ⁽³⁾ Fordham University, Bronx, NY 10458, ⁽⁴⁾ American Museum of Natural History, New York, NY 10024, ⁽⁵⁾ Hashemite University, P.O.Box 150459, 13115 Zarga, Jordan, ⁽⁶⁾ Jet Propulsion Laboratory, Pasadena, CA 91109, (7) University of Illinois Urbana-Champaign

Nuclear Resonances excited with synchrotron radiation

				hydrogen]			10104			2220				01000	2.00		1940. -	044344			helium
	Isotope	Energy (keV)	Lifetime (ns)	Ιù.																		Н́о
1	181 Ta	6 2155	14138	1 0070																		10036
1	la	0.2155	14136	lithium	beryllium	1										1	boron	carbon	nitrogen	oxygen	fluorine	neon
•	16077	9 4012	£ 77	3	_4												5	6	7	8	9	10
2	¹⁰⁹ 1m	8.4013	5.77	Li	Be												В	С	N	0	F	Ne
3	⁸³ Kr	9.4035	212	sodium 11	magnesium 12												aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
-				Na	Ma												ΔΙ	Si	P	S	CL	Δr
4	⁵⁷ Fe	14.4125	141.1	22.990	24.305												26.982	28.086	30.974	32.065	35.453	39,948
-	15172-2	01 5414	12.00	potassium 19	calcium 20]	scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
2	¹³¹ Eu	21.5414	13.99	Ř	Ca		Sc	Ti	Ň	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
6	149 Sm	22 496	10.2	39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
Ŭ.	JIII	22.470	10.2	rubidium 37	strontium 38		39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	indium 49	50	antimony 51	tellurium 52	iodine 53	54 xenon
7	¹¹⁹ Sn	23.8794	25.67	Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
			10.10	85.468 coosium	87.62 barium		88.906 Jutetium	91.224 bafnium	92.906 tantalum	95.94 tungsten	[98]	101.07 osmium	102.91 iridium	106.42 platioum	107.87	112.41	114.82 thallium	118.71	121.76 bismuth	127.60	126.90 astatino	131.29 radon
8	¹⁶¹ Dy	25.6514	40.68	55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
0	201110	26 2729	0.01	Cs	Ba	*	Lu	Ht	Та	W	Re	Os	Ir	Pt	Au	Hg	TL	Pb	Bi	Po	At	Rn
y	-•••ng	20.2756	0.91	132.91 francium	137.33 radium		174.97 Iawrencium	178.49 rutherfordium	180.95 dubnium	183.84 seaborgium	186.21 bohrium	190.23 hassium	192.22 meitnerium	195.08 ununnilium	196.97 unununium	200.59 ununbium	204.38	207.2 ununguadium	208.98	[209]	[210]	[222]
10	1291	27.770	24.2	87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
10		21.110	24.2	Fr	Ra	* *	Lr	Rf	Db	Sa	Bh	Hs	Mt	Uun	Uuu	Uub		Uua				
11	4012	20.924	6.12	[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				
11	N	29.034	0.15																			
12	125 Te	35 460	2.06																			
		001100	2.00				lanthanum 57	cerium 58	praseodymiun 50	neodymium	promethium 61	samarium	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70		
13	¹²¹ Sb	37.129	6.5	*Lant	hanide	series		Co	Dr	Nd	Dm	Sm	Eu	Gd	Th	Div	Цо	Er	Tm	Vh		
	2						La	Ce		NU	F111	511	LU	Gu	150.02	Dy	HO	167.00	460.02	172.04		
14	61Ni	67.419	7.35				actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium		
				**Act	inide s	eries	89	90	91	92	93	94	95	96	97	98	99	100	101	102		
15	⁷³ Ge	68,752	2.68				AC	Ih	Pa	U	Np	Pu	Am	Cm	BK	Ct	ES	Fm	Md	NO		
	00	00.152	2.00				[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]		

What does future hold for IXS and NRS ?

1. Iron work will continue because of the large phase space in chemical composition, pressure and temperature, and ever increasing scope of the extracted data

- Debye temperature, recoil-free fraction,
- Debye sound velocity, anisotropy of shear and compressional velocity,
- Valence and spin state, Magnetism
- Local distortion,
- Isotope fractionation,
- 2. New methodologies will emerge: Fast shutter, energy domain measurements
- 3. New isotopes will get attention: Kr, Eu, Sn, Dy, Sm, Sb, Te, Ge....
- 4. Better monochromators with better resolution of 0.2 meV may come true

5. Area detectors will improve resolution & throughput, new class of materials will become the domain of IXS: e.g. thin films

5. Better data analysis programs may emerge...

In conclusion:

1. APS-U MBA lattice benefits the NRS & IXS experiments in terms of

- better focusing,
- lower horizontal divergence for P/A optics
- increased flux,
- upgraded beamline components
 - mirrors,
 - monochromators, and
 - detectors.
 - fast chopper ..
- **2.** Timing and bunch structure issues will be quite relevant in terms of general applicability of these techniques.
- **3**. We look forward to working with the APS-U project office.