
PRISMA, APS-U- R&D BEAMLINE, 
PTYCHOGRAPHY, VELOCIPROBE…

dr

Stefan Vogt

Associate Division Director, X-ray Science Division, Advanced Photon Source

Principal Science Advisor, APS upgrade

Adj. Assoc. Professor, Feinberg School of Medicine, Northwestern University 



COHERENT DIFFRACTIVE IMAGING

Lensless method

Resolution ~ l / angular size limited only by wavelength and signal

 Two-step process: record coherent diffraction pattern, recover object structure 

numerically (iterative phase retrieval)

 Sensitive to phase as well as absorption of the specimen

 Get 3D by tomographic methods; no depth of field limit

 But: must assume some information to recover phase, e.g. known object extent or 

illumination profile

Diffraction pattern

J. Miao, Nature  400, 342 (1999)

Reconstruction



WHAT IS PTYCHOGRAPHY?
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WHAT IS PTYCHOGRAPHY?



FROM DIFFRACTION PATTERN TO IMAGE: PHASE 
RETRIEVAL

▪ Iterate between real & 

reciprocal space

▪ Reconstruct sample, beam 

(composed of coherent 

modes)



CRYO-PTYCHOGRAPHY & XRF OF CHLAMYDOMONAS REINHARDTII

● 5.2keV, 70nm ZP, 167x151 Cartesian grid

● 0.5s exposure, 6.5h measurement

● white spots beam damage (not careful)

● ~20 nm resolution

=> Beautiful structural visualization, strong 

contrast

Junjing Deng et al., PNAS 2015

TXM: Hummel et al, PLOS One, 2012
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Chip structures

Ptychographic images of a non-

production CMOS IC fabricated in 

65-nm technology. Deng et al, 

Phys Rev B, 2017
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The

IARPA RAVEN Program

(Rapid Analysis of Various Emerging Nanoelectronics)

====

Ptychography-based Rapid Imaging of 

Nano-structures with Multi-layer 

Assemblies (PRISMA)
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RAVEN/RAVEN: Goals/Metrics

Metric Phase-1 per BAA   Phase 2 Phase 3 

IC Area 1 cm2 1 mm2 1 cm2 1 cm2 

Duration/Goal 
24 months – 

Develop Test Bench 
Tool 

24 months – Develop 
Test Bench Tool 

24 months – 
Develop Alpha 

Prototype 

12 months – 
Develop Beta 

Prototype 

Time 

80 days to acquire 
images and 

reconstruct all 
circuit layers with 

>90% accuracy 

80 days to acquire 
images and reconstruct 

all circuit layers with 
>90% accuracy 

40 days to acquire 
images and 

reconstruct all 
circuit layers with 

100% accuracy 

25 days to acquire 
images and 

reconstruct all 
circuit layers with 

100% accuracy 

Lateral Resolution 20 nm 20 nm ≤ 10 nm ≤ 10 nm 

Vertical Resolution 20 nm 20 nm ≤ 10 nm ≤ 10 nm 

Metal Layers ≤ 13 ≤ 13 ≤ 13 ≤ 13 

Reproducibility - - 95% 100% 

Test Articles 
Bare die ≥ 14 nm 

feature size 
Bare die ≥ 14 nm 

feature size 
Bare die, 10 nm 

feature size 
Bare die, 10 nm 

feature size 

IC Thickness ≥ 50 μm ≥ 50 μm 50 - 200 μm ≥ 50 - 200 μm 

 
Both resolution and timing are very challenging goals/metrics.  To meet them, it requires special 

imaging equipment (monochromator, microscope, detector, etc.), a powerful x-ray source with 

substantial photon flux, and powerful advanced computing resources.

10x10x0.1mm3 => 10PB @ 1 byte greyscale
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Early Data on 22 nm Technology

Sockel LGA 1150, 3MB Cache, 

22nm, 53Watt, inkl. GMA HD 

Grafikkern (350/1100 MHz GPU), 

Intel HD, inkl. Cooler

Inhomogeneous polishing trying to 

remove copper layer and 

interconnects

Copper & interconnects

Active layer

Silicon

~10 µm 

cylinder

Paul Scherrer Institute

http://www.google.ch/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwj5rvzp1dvKAhUJ6xQKHfdsAUgQjRwIBw&url=http://www.skroutz.gr/s/6536157/Intel-Pentium-Dual-Core-G3260-Box.html&psig=AFQjCNEhY2E_fYw5br3F5zUzF7OzbBduyQ&ust=1454591469440304
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Early Data on 22 nm Technology

Paul Scherrer Institute
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Early Data on 22 nm Technology

3D resolution 14.6 nm

DOI:10.1038/nature21698

Normal incidence tomography, limited 

to small sample volumes. 

Paul Scherrer Institute

http://dx.doi.org/10.1038/nature21698
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PRISMA Program - Overview

TEAM DESCRPTION

Performers:

• USC’s Information Sciences Institute (ISI) 

and Dep. of Electrical Engineering – Prime

• Northwestern University’s EE Dept. - Sub

• Stanford University’s EE Dept. - Sub

• Paul Scherrer Institute (PSI) - Sub

Collaborators:

• Intel Corporation

• Argonne’s Advanced Photon Source (APS) 
[1]

APPROACH

• Non-destructive X-ray IC imaging of 1 cm2

bare die up to 50 µm thick.

• Coherent Diffraction Imaging (Ptychography) 

X-ray and novel HPC algorithms.

• Use of IC collateral/available information to 

tune the imaging process parameters, and 

expedite the image acquisition process.

• Construction of a CDI-tailored microscope, 

detector, and high-efficiency FZPs.

EXPECTED RESULTS

• PHASE-1:

 2D and 3D X-ray imaging of 1 mm2 bare IC 

die.

 Establishment/completion of a RAVEN-centric 

X-ray endstation at ANL’s APS.

 Imaging algorithms and HPC infrastructure.

• PHASE-2 & 3:

 2D and 3D imaging of 1 cm2 bare IC die up to 

50 µm thick.

 Full engagement of integrated X-ray 

endstation at ANL’s APS for experiments.

SCHEDULE AND STATUS

• IC specimens for initial experiments currently 

available (Intel-provided). 

• Initial X-ray endstation and companion 

instrumentation currently available.

• Initial experiments: June, 2017 (starting).

• Completion of RAVEN-centric X-ray endstation 

24 months ACA (end of Phase-1).

• Integration of PSI-provided instrumentation at 

ANL’s APS: 32 months ACA.

• Phase-2 & -3 experiments:  Starting 36 mos. ACA  

1.  Argonne APS collaboration/involvement in PRISMA is “GFE” per BAA’s instructions 
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PRISMA@APS

 Prisma will access APS through either CDT or PUP

 Early access (2017 & 2018) on existing instrumentation 

(Velociprobe - up to 30% of available time)

 Early experiments and data

 Develop / prototype analysis pipeline

 Build new beamline with APS/APS-U/Prisma resources

 Prisma will be installed at sector 28 of APS

 Assembling package for procurement of hutches at Sector 28

 Expect award by 6/30/2017

 Prisma @ S28 Online 2019

 30% beamtime dedicated to Prisma

 Planning to optimize for high stability, high flux

 H-DMM planned



THE VELOCIPROBE
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Early Access: Velociprobe

Goal:

 To push speed limit for scanning, while 

retaining high stability and position control

 Ptychography: 10 nm and below

 Fluorescence: 50 nm and below

Note: focus on 2D images, 

but tomography capable (not laminography)

Concept:

 Ultra-stable granite coarse stages

 Fast scanning of zone plate

 Low-noise, high-bandwidth, interferometer-

encoded control

L to R: Junjing Deng, Curt Preissner, and Chris Roehrig, also Shane 

Sullivan, Zhonghou Cai, Barry Lai, Joerg Maser, David Vine, Stefan Vogt , 

…
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2-ID-E 2-ID-D2-ID-A 2-ID-B
Decommissioned

Beam

VELOCIPROBE INSTALLED AT 2-ID-D

DMM DCM

u-probe

velociprobe

 2-ID-D and 2-ID-E operate in parallel 

 2-ID-D : 
– Microfluorescence: 100-200 nm beam

– New velociprobe instrument

 2-ID-E: Microfluorescence: 300 nm beam

 Shared beam defining slits

 2x 3.3cm Undulator (collinear)

 Mirror (Si, Rh, Pt stripes)

 For 2-ID-D: DCM & DMM
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200 nmπ 0

First experiments

500 nm

Phase of reconstructed object

Optics

• Zone plate: 180 um diameter, 50 nm outmost width

• Beam stop: 65 um

• OSA: 30 um

Reconstruction

• Ptychographic image: 

12.5 nm resolution

• Focused beam: 

58 nm FWHM

Scans

• 40 nm step size

• 50 ms /point

• 8 keV x-rays

Ge particles

• Highly promising anode 

materials for lithium-ion 

batteries. 

• Particle size: 500 nm – 5 um

Test pattern

Reconstruction:

19.2 nm resolution



VELOCIPROBE TIMELINE:

 Installed in January 2017

 Initial commissioning 2017-1 cycle (Feb-Apr)

 2017-2 (Jun-Aug): continue commissioning + friendly 1st users

– Prisma 3-6 days as required

 2017-3 (Oct-Dec): open to GU

– Prisma 3-6 days as required

 2018-1: GU, Prisma 3-6 days as required

 2018-2: GU, Prisma 3-4 weeks as required

 2018-3: GU, Prisma 4-5 weeks as required

- ‘end’ of prisma CDT at 2-ID

 2019-1: sector 2 down for canting (change from original plan)

 2019-2: sector 2 commissioning (LN2 mono, HDCM, …), friendly users

 2019-3: GU operations
20

Tentative plan 2017-2:

May 31st – June 5th : commissioning

June 13th – June 19th : commissioning

July 8th – July 14th : Prisma

July 25th – July 31st : tbd

August 9th – 22nd : tbd
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Key points during phase 1

 developing data analysis pipeline, up to 20Gb/s for phase 1, 60Gb/s for 

phase 2 & 3

 ZPs are chromatic lenses – how well do they work for ptychography with a 

multilayer monochromator ?

 Alternatives: capillary optic; narrow bandwidth multilayer 

 ZP parameters (size and beam divergence)? 

 Tradeoff flux vs degree of spatial coherence ?

 Tradeoff illumination area vs sampling frequency ?

 Acquire data in ‘tiles’ – what is the ideal tile size (100x100 um2) for 

acquisition, processing, etc ?

 Design / develop hutch (S28) for phase 2



PRISMA ENDSTATION @ S28 (APS-U R&D BL)



S28 HUTCH LAYOUT
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Sector 28 timeline:

 September 2017: award of hutch 

procurement

 2017/2018: construction

 Oct 2018: shielding verification of 

FOE

 Oct-Dec 2018: 

– installation of BL optics (monos, 

etc)

– begin commissioning

 Feb-Apr 2019: ready for installation 

of Prisma endstation instrument
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Status of the End Station Instrument

Sample

scanner

and 

rotation

Interferometry

FZP

Paul Scherrer Institute
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EIGER detector: Characteristics

Pixel size 75 x 75 um2

Counter 4/8/12 bit

Chip frame rate 23/12/8 kHz

Dead time between frames 3 us

Min. threshold (high frame rate) 4.5-5 keV

Threshold dispersion (after 
trimming)

< 50 eV

Noise 350-700 eV RMS

E

I

Monochromatic X-rays

Adj. Gain Global Threshold Vcmp

Single-photon counting with hybrid 

pixel detectors: No background 

and no readout noise, high 

dynamic range. 

Key parameters:

Paul Scherrer Institute



DATA ACQUISITION CONSIDERATIONS:
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 Assume detector operates at 13kHz: 1.1e9 measurements / day, or 

2.25e10 measurements in 20 days.

 Distance between measurement spots: 0.66 microns

(10.*10000./sqrt(2.25e10) = 0.66)

this assumes we need 10 projections, each of which is 10x10 mm

 66% overlap: 2 micron spot size, 50% overlap 1.3 um spot size, 5 nm 

resolution, 10 keV

Oversample
probe size 

(um)
pixel distance (m)

3.5 2.0 1400 4.23

3.8 1.3 1000 3.85

5 2.0 2000 6.05

5.4 1.3 1400 4.23



POTENTIAL APPROACHES

27

‘easier to implement’:

Reconstruct local 2D patches, say 50x50 um = 5700 

measurements,

= 8.6 GB in 0.45s

Throw away data

Stitch 2D patches into one large 2D projection

Reconstruct global 3D data set based on ~10 full projections

Better quality reconstruction ?

Reconstruct local 3D volumes, local tomography based on 

ptychography, eg, 50x50umx10 projections= 57000 

measurements, 

86GB in 4.5s.

Throw away data

Stitch 3D patches into final 3D dataset.



REASONING
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• $2.1M in equipment money 

• Includes hutch to be used for CHEX later

• 2 FTEs starting in year 2,3

• Helps us push technology and methods that 

will be directly relevant for APS-U

• Consistent, fast data handling

• Data analysis

• Lensless imaging

no commitment after 5 years



APS MBA UPGRADE
Brightness vs. x-ray energy

• Brightness increases of 

100x and more compared to 

what we have today

• Micro/nanoprobes directly 

brightness driven

 possible to get nearly 100% 

of APS flux into a 0.3x0.25 

um spot !!!

 5nm and below for 

elemental mapping and with 

CDI/Ptychography

This upgrade will revolutionize 

scanning probe microscopies…

APS Today APS Upgrade
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Thanks!  


